Computer Science ›› 2024, Vol. 51 ›› Issue (11A): 231000033-6.doi: 10.11896/jsjkx.231000033
• Information Security • Previous Articles Next Articles
WANG Chundong, ZHANG Jiakai
CLC Number:
[1]GU J,WANG L H,WANG H W,et al.A novel approach to intrusion detection using SVM ensemble with feature augmentation[J].Comput.Secur.,2019,86:53-62. [2]BELOUCH M,EL HADAJ S,IDHAMMAD M,et al.Performance evaluation of intrusion detection based on machine learning using Apache Spark[J].Procedia Computer Science,2018,127:1-6. [3]NASR M,BAHRAMALI A,HOUMANSADR A,et al.DeepCorr:Strong Flow Correlation Attacks on Tor Using Deep Learning[C]//Proceedings of the 2018 ACM SIGSAC Confe-rence on Computer and Communications Security.2018. [4]LI X K,CHEN W,ZHANG Q R,et al.Building Auto-Encoder Intrusion Detection System based on random forest feature se-lection[J].Comput.Secur.,2020,95:101851. [5]XIAO Y H,XING C,ZHANG T N,et al.An Intrusion Detection Model Based on Feature Reduction and Convolutional Neural Networks[J].IEEE Access,2019,7:42210-42219. [6]SCHEIRER W J,DE REZENDE ROCHA A,SAPKOTA A,et al.Toward Open Set Recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(7):1757-1772. [7]CRUZ S,COLEMAN C,RUDD E M,et al.Open set intrusion recognition for fine-grained attack categorization[C]//2017 IEEE International Symposium on Technologies for Homeland Security(HST).Waltham,MA,USA,2017:1-6. [8]RUDD E M,JAIN L P,SCHEIRER W J,et al.The Extreme Value Machine[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2018,40(3):762-768. [9]HENRYDOSS J,CRUZ S,RUDD E M,et al.Incremental Open Set Intrusion Recognition Using Extreme Value Machine[C]//2017 16th IEEE International Conference on Machine Learning and Applications(ICMLA).Cancun,Mexico,2017:1089-1093. [10]SHU L,XU H,LIU B.Doc:Deep open classification of text documents[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing.2017:2911-2916. [11]HASSEN M,CHAN P K.Learning a neural-network-based rep-resentation for open set recognition[C]//Proceedings of the 2020 SIAM International Conference on Data Mining.SIAM,2020:154-162. [12]SHIEH C S,LIN W W,NGUYEN T T,et al.Detection of unknown ddos attacks with deep learning and gaussian mixture model[J].Applied Sciences,2021,11(11):5213. [13]LAI Y,PING G,WU Y,et al.Opensmax:Unknown domaingeneration algorithm detection[J].Frontiers in Artificial Intelligence and Applications,2020,325:1850-1857. [14]ZHANG Y,NIU J,GUO D,et al.Unknown network attack detection based on open set recognition[J].Procedia Computer Science,2020,174:387-392. [15]LIU A,WANG Y,LI T.SFE-GACN:A novel unknown attack detection under insufficient data via intra categories generation in embedding space[J].Computers & Security,2021,105:102262. [16]GUO J,GUO S,MA S,et al.Conservative Novelty Synthesizing Network for Malware Recognition in an Open-Set Scenario[J].IEEE Transactions on Neural Networks and Learning Systems,34(2):662-676. [17]VAZE S,HAN K,VEDALOI A,et al.Open-Set Recognition:Good Closed-Set Classifier is All You Need[J].arXiv:2110.06207,2022. [18]HASSEN M,CHAN P K.Learning a Neural-network-basedRepresentation for Open Set Recognition[C]//SDM.2018. |
[1] | DU Yu, YU Zishu, PENG Xiaohui, XU Zhiwei. Padding Load:Load Reducing Cluster Resource Waste and Deep Learning Training Costs [J]. Computer Science, 2024, 51(9): 71-79. |
[2] | XU Jinlong, GUI Zhonghua, LI Jia'nan, LI Yingying, HAN Lin. FP8 Quantization and Inference Memory Optimization Based on MLIR [J]. Computer Science, 2024, 51(9): 112-120. |
[3] | SUN Yumo, LI Xinhang, ZHAO Wenjie, ZHU Li, LIANG Ya’nan. Driving Towards Intelligent Future:The Application of Deep Learning in Rail Transit Innovation [J]. Computer Science, 2024, 51(8): 1-10. |
[4] | KONG Lingchao, LIU Guozhu. Review of Outlier Detection Algorithms [J]. Computer Science, 2024, 51(8): 20-33. |
[5] | TANG Ruiqi, XIAO Ting, CHI Ziqiu, WANG Zhe. Few-shot Image Classification Based on Pseudo-label Dependence Enhancement and NoiseInterferenceReduction [J]. Computer Science, 2024, 51(8): 152-159. |
[6] | XIAO Xiao, BAI Zhengyao, LI Zekai, LIU Xuheng, DU Jiajin. Parallel Multi-scale with Attention Mechanism for Point Cloud Upsampling [J]. Computer Science, 2024, 51(8): 183-191. |
[7] | ZHANG Junsan, CHENG Ming, SHEN Xiuxuan, LIU Yuxue, WANG Leiquan. Diversified Label Matrix Based Medical Image Report Generation [J]. Computer Science, 2024, 51(8): 200-208. |
[8] | GUO Fangyuan, JI Genlin. Video Anomaly Detection Method Based on Dual Discriminators and Pseudo Video Generation [J]. Computer Science, 2024, 51(8): 217-223. |
[9] | CHEN Siyu, MA Hailong, ZHANG Jianhui. Encrypted Traffic Classification of CNN and BiGRU Based on Self-attention [J]. Computer Science, 2024, 51(8): 396-402. |
[10] | YANG Heng, LIU Qinrang, FAN Wang, PEI Xue, WEI Shuai, WANG Xuan. Study on Deep Learning Automatic Scheduling Optimization Based on Feature Importance [J]. Computer Science, 2024, 51(7): 22-28. |
[11] | LI Jiaying, LIANG Yudong, LI Shaoji, ZHANG Kunpeng, ZHANG Chao. Study on Algorithm of Depth Image Super-resolution Guided by High-frequency Information ofColor Images [J]. Computer Science, 2024, 51(7): 197-205. |
[12] | SHI Dianxi, GAO Yunqi, SONG Linna, LIU Zhe, ZHOU Chenlei, CHEN Ying. Deep-Init:Non Joint Initialization Method for Visual Inertial Odometry Based on Deep Learning [J]. Computer Science, 2024, 51(7): 327-336. |
[13] | FAN Yi, HU Tao, YI Peng. Host Anomaly Detection Framework Based on Multifaceted Information Fusion of SemanticFeatures for System Calls [J]. Computer Science, 2024, 51(7): 380-388. |
[14] | GAN Run, WEI Xianglin, WANG Chao, WANG Bin, WANG Min, FAN Jianhua. Backdoor Attack Method in Autoencoder End-to-End Communication System [J]. Computer Science, 2024, 51(7): 413-421. |
[15] | HUANG Haixin, CAI Mingqi, WANG Yuyao. Review of Point Cloud Semantic Segmentation Based on Graph Convolutional Neural Networks [J]. Computer Science, 2024, 51(6A): 230400196-7. |
|