计算机科学 ›› 2022, Vol. 49 ›› Issue (11A): 211100266-7.doi: 10.11896/jsjkx.211100266

• 大数据&数据科学 • 上一篇    下一篇

基于分数线预测的多特征融合高考志愿推荐算法

王泽卿1, 季圣鹏1, 李鑫2, 赵子轩1, 王鹏旭1, 韩霄松1,3   

  1. 1 吉林大学软件学院 长春 130012
    2 吉林大学原子与分子物理研究所 长春 130012
    3 吉林大学计算机科学与技术学院 长春 130012
  • 出版日期:2022-11-10 发布日期:2022-11-21
  • 通讯作者: 韩霄松(hanxiaosong@jlu.edu.cn)
  • 作者简介:(wangzq5519@mails.jlu.edu.cn)
  • 基金资助:
    国家自然科学基金(61972174);国家级大学生创新创业训练计划(202110183225)

Novel College Entrance Filling Recommendation Algorithm Based on Score Line Prediction andMulti-feature Fusion

WANG Ze-qing1, JI Sheng-peng1, LI Xin2, ZHAO Zi-xuan1, WANG Peng-xu1, HAN Xiao-song1,3   

  1. 1 College of Software,Jilin University,Changchun 130012,China
    2 The Institute of Atomic and Molecular Physics,Jilin University,Changchun 130012,China
    3 College of Computer Science and Technology,Jilin University,Changchun 130012,China
  • Online:2022-11-10 Published:2022-11-21
  • About author:WANG Ze-qing,born in 2000,undergraduate,is a student member of China Computer Federation.His main research interests include machine learning and recommender system.
    HAN Xiao-song,born in 1984,Ph.D,associate professor,is a member of China Computer Federation.His main research interests include machine lear-ning and optimization algorithm.
  • Supported by:
    National Natural Science Foundation of China(61972174) and National Innovation and Entrepreneurship Trai-ning Program for College Students(202110183225).

摘要: 近年来,随着我国高考人数逐年增多,考生对高考志愿填报服务的需求日益增加。面对海量的院校填报信息,考生往往很难在短期内做出比较符合自身意愿的合理选择,进而导致报考事故的发生。因此,针对高考志愿报名问题,在爬取历年高考录取数据的基础上,提出一种基于分数线预测的多特征融合推荐算法(Reco-PMF)。该算法首先利用历年高校最低投档位次,通过BP神经网络预测报考年份各高校最低投档位次以及最低投档分数线,然后根据考生分数进行院校初筛,进而构建3种与录取分数相关的特征,结合院校软科排名,通过遗传算法进行权值寻优,得到不同院校的录取概率,并在此基础上定义推荐度实现为考生进行不同录取风险层次的高校推荐,形成完整的推荐结果。实验结果表明,基于BP神经网络的高校录取分数预测算法在不同误差限下的表现均优于其他算法;相比百度和夸克的已有服务,所提算法在多层次测试分数下,平均录取率分别提升14.8%和24.1%,同时成功录取院校的平均位次分别提升了99名和87名。

关键词: 高考志愿填报, 分数线预测, 参数优化, 多权重, 遗传算法

Abstract: In recent years,as the number of high school graduates growing,the demand of college entrance filling is increasing.But faced with massive amounts of college entrance data,students always cannot make reasonable decisions conform to their own will in a short time,resulting in filling accident.To address this issue,on the basis of crawling college entrance history data by web spider,a novel college entrance filling recommendation algorithm based on score line prediction and multi-feature fusion(Reco-PMF) is proposed.Firstly,BP neural network is applied to predict all the colleges admission lines of current year.Then,combining with colleges’ rankings,an admission probability algorithm is constructed on the basis of three score related features.Genetic algorithm is employed to optimize the weights of above features.On this basis,recommendation-score is defined to measure admission risk.Finally,a college filling list with multi-admission risk is generated.Experiment results show that,the college admission line prediction algorithm based on BP neural network performs better than other algorithms under all error bounds.Compared with existing on-line services of Baidu and Kuake,Reco-PMF increases the acceptance rates by 14.8% and 24.1%,and improves the average ranking of recommended colleges by 99 and 87 in accepted colleges.

Key words: College entrance filling, Score line prediction, Parameter optimization, Multi-weight, Genetic algorithm

中图分类号: 

  • TP391
[1]YAN W.Research on fuzzy clustering mining technology and its application in college entrance examination voluntary filling service[D].Changsha:Central South University College of Information Science and Engineering,2009.
[2]FANG X F.Fill in application for college entrance examination scientifically and reasonably[J].Shanxi Education,2018(10):7.
[3]XIONG B Q.What Is the Implication of Gaokao Examinees’Number Back to Ten Million?[J].Shanghai Journal of Educational Evaluation,2019,8(4):14-17.
[4]CHENG L L.Design and implementation of volunteer filling system based on multi-source heterogeneous data page rende-ring[D].Shenyang:Shenyang Institute of Computing Techno-logy,Chinese Academy of Sciences,2021.
[5]MENG Z.Design and implementation of college entrance examination recommendation system based on Spark[D].Jinan:Shandong Normal University.2017.
[6]KANG L,HA W.The Effect of College Admission Mechanism Reforms on the Quality of Matching(2005-2011)[J].Peking University Education Review,2016,14(1):105-125,191.
[7]REN J T.Application of recommendation algorithm in college entrance examination[D].Kunming:Yunnan University of Finance and Economics,2018.
[8]YIN H Y.Design and Implementation of university entranceexamination volunteer recommendation system based on big data[D].Chengdu:University of Electronic Science and Technology of China,2018.
[9]WANG Y J.Research of Adult College Specialties Recommendation System Based on Data Mining and Collaborative Filtering[D].Beijing:Beijing Forestry University,2011.
[10]WU L.Design and Implementation of Intelligent Wish Filling System for College Entrance Examination[D].Kunming:Yunnan University of Finance and Economics,2018.
[11]YU K F,DUAN G H,SHI X.Recommendation algorithm of college entrance examination based on fuzzy clustering of multi-feature weights[J].Journal of Central South University(Science and Technology),2020,51(12):3418-3429.
[12]EOL[EB/OL].[2021-10-10].https://www.eol.cn/.
[13]ShangHaiRanking[EB/OL].[2021-10-10].https://www.shanghairanking.cn/.
[14]YangGuangGaoKao[EB/OL].[2021-10-10].https://gaokao.chsi.com.cn/.
[15]HOLLAND J H.Adaptation in Natural and Artificial Systems SIAM Review[EB/OL].[2021-10-13].https://dl.acm.org/doi/10.1137/1018105.
[16]ZHENG L P,HAO Z X.A Review on the Theory for the Gene-tic Algorithm[J].Computer Engineering and Applications,2003(21):50-53,96.
[17]BIAN X,MI L.Development on genetic algorithm theory and its applications[J].Application Research of Computers,2010,27(7):2425-2429,2434.
[18]XU L J,LI S,YAN Z.College Entrance Examination Voluntary Recommendation System Based on Collaborative Filtering[J].Computer System&Applications,2015,24(7):185-189.
[19]Baidu[EB/OL].[2021-10-10].https://www.baidu.com/.
[20]Quark[EB/OL].[2021-10-10].https://www.myquark.cn/.
[21]LIU W D,LIU Y N.Variational autoencoder with side information in recommendation systems[J].Journal of Tsinghua University(Science and Technology),2018,58(8):698-702.
[1] 王兵, 吴洪亮, 牛新征.
基于改进势场法的机器人路径规划
Robot Path Planning Based on Improved Potential Field Method
计算机科学, 2022, 49(7): 196-203. https://doi.org/10.11896/jsjkx.210500020
[2] 杨浩雄, 高晶, 邵恩露.
考虑一单多品的外卖订单配送时间的带时间窗的车辆路径问题
Vehicle Routing Problem with Time Window of Takeaway Food ConsideringOne-order-multi-product Order Delivery
计算机科学, 2022, 49(6A): 191-198. https://doi.org/10.11896/jsjkx.210400005
[3] 沈彪, 沈立炜, 李弋.
空间众包任务的路径动态调度方法
Dynamic Task Scheduling Method for Space Crowdsourcing
计算机科学, 2022, 49(2): 231-240. https://doi.org/10.11896/jsjkx.210400249
[4] 张冰清, 费琪, 王轶辰, 杨召.
面向SOA的集成测试序列生成算法研究
Study on Integration Test Order Generation Algorithm for SOA
计算机科学, 2022, 49(11): 24-29. https://doi.org/10.11896/jsjkx.210400210
[5] 杨文博, 原继东.
局部时间序列黑盒对抗攻击
Locally Black-box Adversarial Attack on Time Series
计算机科学, 2022, 49(10): 285-290. https://doi.org/10.11896/jsjkx.210900254
[6] 吴善杰, 王新.
基于AGA-DBSCAN优化的RBF神经网络构造煤厚度预测方法
Prediction of Tectonic Coal Thickness Based on AGA-DBSCAN Optimized RBF Neural Networks
计算机科学, 2021, 48(7): 308-315. https://doi.org/10.11896/jsjkx.200800110
[7] 郑增乾, 王锟, 赵涛, 蒋维, 孟利民.
带宽和时延受限的流媒体服务器集群负载均衡机制
Load Balancing Mechanism for Bandwidth and Time-delay Constrained Streaming Media Server Cluster
计算机科学, 2021, 48(6): 261-267. https://doi.org/10.11896/jsjkx.200400131
[8] 王金恒, 单志龙, 谭汉松, 王煜林.
基于遗传优化PNN神经网络的网络安全态势评估
Network Security Situation Assessment Based on Genetic Optimized PNN Neural Network
计算机科学, 2021, 48(6): 338-342. https://doi.org/10.11896/jsjkx.201200239
[9] 周益旻, 刘方正, 王勇.
基于混合方法的IPSec VPN加密流量识别
IPSec VPN Encrypted Traffic Identification Based on Hybrid Method
计算机科学, 2021, 48(4): 295-302. https://doi.org/10.11896/jsjkx.200700189
[10] 左剑凯, 吴杰宏, 陈嘉彤, 刘泽源, 李忠智.
异构无人机编队防御及评估策略研究
Study on Heterogeneous UAV Formation Defense and Evaluation Strategy
计算机科学, 2021, 48(2): 55-63. https://doi.org/10.11896/jsjkx.191100053
[11] 邓丽, 武金达, 李科学, 卢亚康.
基于TPE的SpaRC算法超参数优化方法
SpaRC Algorithm Hyperparameter Optimization Methodology Based on TPE
计算机科学, 2021, 48(2): 70-75. https://doi.org/10.11896/jsjkx.200500156
[12] 高帅, 夏良斌, 盛亮, 杜宏亮, 袁媛, 韩和同.
基于投影圆度和遗传算法的空间圆柱面拟合方法
Spatial Cylinder Fitting Based on Projection Roundness and Genetic Algorithm
计算机科学, 2021, 48(11A): 166-169. https://doi.org/10.11896/jsjkx.201100057
[13] 姚泽玮, 林嘉雯, 胡俊钦, 陈星.
基于PSO-GA的多边缘负载均衡方法
PSO-GA Based Approach to Multi-edge Load Balancing
计算机科学, 2021, 48(11A): 456-463. https://doi.org/10.11896/jsjkx.210100191
[14] 高基旭, 王珺.
一种基于遗传算法的多边缘协同计算卸载方案
Multi-edge Collaborative Computing Unloading Scheme Based on Genetic Algorithm
计算机科学, 2021, 48(1): 72-80. https://doi.org/10.11896/jsjkx.200800088
[15] 吉顺慧, 张鹏程.
基于支配关系的数据流测试用例生成方法
Test Case Generation Approach for Data Flow Based on Dominance Relations
计算机科学, 2020, 47(9): 40-46. https://doi.org/10.11896/jsjkx.200700021
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!