Computer Science ›› 2020, Vol. 47 ›› Issue (2): 83-87.doi: 10.11896/jsjkx.190500077
• Computer Graphics & Multimedia • Previous Articles Next Articles
WANG Li-hua,DU Ming-hui,LIANG Ya-ling
CLC Number:
[1]KRIZHEVSKY A,SUTSKEVER I,HINTON G E.ImageNet classification with deep convolutional neural networks[J].Communications of the ACM,2017,60(6):84-90. [2]SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[J].arXiv:1409.1556,2014. [3]SZEGEDY C,LIU W,JIA Y Q,et al.Going deeper with convolutions[C]∥2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Boston,MA,USA:IEEE,2015:1-9. [4]GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]∥2014 IEEE Conference on Computer Vision and Pattern Recognition.Columbus,OH,USA:IEEE,2014:580-587. [5]GIRSHICK R.Fast R-CNN[C]∥2015 IEEE International Conference on Computer Vision (ICCV).Santiago,Chile:IEEE,2015:1440-1448. [6]REN S Q,HE K M,GIRSHICK R,et al.Faster R-CNN:to-wards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149. [7]LONG J,SHELHAMER E,DARRELL T.Fully convolutional networks for semantic segmentation[C]∥2015 IEEE Confe-rence on Computer Vision and Pattern Recognition (CVPR).Boston,MA,USA:IEEE,2015:3431-3440. [8]SIMONYAN K,ZISSERMAN A.Two-stream convolutional networks for action recognition in videos[C]∥Advances in Neural Information Processing Systems.2014:568-576. [9]HE K M,ZHANG X Y,REN S Q,et al.Deep residual learning for image recognition[C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Las Vegas,NV,USA:IEEE,2016:770-778. [10]HUANG G,LIU Z,MAATEN L V D,et al.Densely connected convolutional networks[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).IEEE,2017:4700-4708. [11]IOFFE S,SZEGEDY C.Batch normalization:Accelerating deep network training by reducing internal covariate shift[J].arXiv:1502.03167,2015. [12]SALIMANS T,KINGMA D P.Weight normalization:A simple reparameterization to accelerate training of deep neural net-works[C]∥Advances in Neural Information Processing Systems.2016:901-909. [13]LEI BA J,KIROS J R,HINTON G E.Layer normalization[J].arXiv:1607.06450,2016. [14]SCHROFF F,KALENICHENKO D,PHILBIN J.FaceNet:a unified embedding for face recognition and clustering[C]∥2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Boston,MA,USA:IEEE,2015:815-823. [15]LIU W,WEN Y,YU Z,et al.Large-margin softmax loss for convolutional neural networks[C]∥ICML.2016:7. [16]RANJAN R,CASTILLO C D,CHELLAPPA R.L2-constrained softmax loss for discriminative face verification[J].arXiv:1703.09507,2017. [17]LIU W Y,WEN Y D,YU Z D,et al.SphereFace:deep hypersphere embedding for face recognition[C]∥2017 IEEE Confe-rence on Computer Vision and Pattern Recognition (CVPR).Honolulu,HI:IEEE,2017:212-220. [18]WANG F,CHENG J,LIU W Y,et al.Additive margin softmax for face verification[J].IEEE Signal Processing Letters,2018,25(7):926-930. [19]WANG H,WANG Y T,ZHOU Z,et al.CosFace:large margin cosine loss for deep face recognition[C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City,UT:IEEE,2018:5265-5274. [20]DENG J,GUO J,XUE N,et al.Arcface:Additive angular margin loss for deep face recognition[J].arXiv:1801.07698,2018. [21]HUANG G B,LEARNED-MILLER E.Labeled faces in the wild:Updates and new reporting procedures:Technical Report UM-CS-2014-003 [R].Massachusetts Amherst,Amherst,MA,USA,2014. [23]LIU W Y,LIU Z,YU Z D,et al.Decoupled networks[C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City,UT:IEEE,2018:2771-2779. |
[1] | ZHU Cheng-zhang, HUANG Jia-er, XIAO Ya-long, WANG Han, ZOU Bei-ji. Deep Hash Retrieval Algorithm for Medical Images Based on Attention Mechanism [J]. Computer Science, 2022, 49(8): 113-119. |
[2] | WU Hong-xin, HAN Meng, CHEN Zhi-qiang, ZHANG Xi-long, LI Mu-hang. Survey of Multi-label Classification Based on Supervised and Semi-supervised Learning [J]. Computer Science, 2022, 49(8): 12-25. |
[3] | MENG Yue-bo, MU Si-rong, LIU Guang-hui, XU Sheng-jun, HAN Jiu-qiang. Person Re-identification Method Based on GoogLeNet-GMP Based on Vector Attention Mechanism [J]. Computer Science, 2022, 49(7): 142-147. |
[4] | YANG Jian-nan, ZHANG Fan. Classification Method for Small Crops Combining Dual Attention Mechanisms and Hierarchical Network Structure [J]. Computer Science, 2022, 49(6A): 353-357. |
[5] | DU Li-jun, TANG Xi-lu, ZHOU Jiao, CHEN Yu-lan, CHENG Jian. Alzheimer's Disease Classification Method Based on Attention Mechanism and Multi-task Learning [J]. Computer Science, 2022, 49(6A): 60-65. |
[6] | GAO Rong-hua, BAI Qiang, WANG Rong, WU Hua-rui, SUN Xiang. Multi-tree Network Multi-crop Early Disease Recognition Method Based on Improved Attention Mechanism [J]. Computer Science, 2022, 49(6A): 363-369. |
[7] | WANG Jian-ming, CHEN Xiang-yu, YANG Zi-zhong, SHI Chen-yang, ZHANG Yu-hang, QIAN Zheng-kun. Influence of Different Data Augmentation Methods on Model Recognition Accuracy [J]. Computer Science, 2022, 49(6A): 418-423. |
[8] | SUN Jie-qi, LI Ya-feng, ZHANG Wen-bo, LIU Peng-hui. Dual-field Feature Fusion Deep Convolutional Neural Network Based on Discrete Wavelet Transformation [J]. Computer Science, 2022, 49(6A): 434-440. |
[9] | ZHU Xu-dong, XIONG Yun. Study on Multi-label Image Classification Based on Sample Distribution Loss [J]. Computer Science, 2022, 49(6): 210-216. |
[10] | PENG Yun-cong, QIN Xiao-lin, ZHANG Li-ge, GU Yong-xiang. Survey on Few-shot Learning Algorithms for Image Classification [J]. Computer Science, 2022, 49(5): 1-9. |
[11] | ZHANG Wen-xuan, WU Qin. Fine-grained Image Classification Based on Multi-branch Attention-augmentation [J]. Computer Science, 2022, 49(5): 105-112. |
[12] | XU Hua-jie, CHEN Yu, YANG Yang, QIN Yuan-zhuo. Semi-supervised Learning Method Based on Automated Mixed Sample Data Augmentation Techniques [J]. Computer Science, 2022, 49(3): 288-293. |
[13] | DONG Lin, HUANG Li-qing, YE Feng, HUANG Tian-qiang, WENG Bin, XU Chao. Survey on Generalization Methods of Face Forgery Detection [J]. Computer Science, 2022, 49(2): 12-30. |
[14] | CHEN Zhi-yi, SUI Jie. DeepFM and Convolutional Neural Networks Ensembles for Multimodal Rumor Detection [J]. Computer Science, 2022, 49(1): 101-107. |
[15] | HUANG Ying-qi, CHEN Hong-mei. Cost-sensitive Convolutional Neural Network Based Hybrid Method for Imbalanced Data Classification [J]. Computer Science, 2021, 48(9): 77-85. |
|