Computer Science ›› 2022, Vol. 49 ›› Issue (6): 210-216.doi: 10.11896/jsjkx.210300267
• Computer Graphics & Multimedia • Previous Articles Next Articles
ZHU Xu-dong, XIONG Yun
CLC Number:
[1] WANG J,YI Y,MAO J H,et al.Cnn-rnn:A unified framework for multi-label image classification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.IEEE Press,2016:2285-2294. [2] CHEN Z M,WEI X S,WANG P,et al.Multi-Label Image Reco-gnition With Graph Convolutional Networks.[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.IEEE Press,2016:5177-5186. [3] ZHOU B,CUI Q,WEI X S,et al.Bbn:Bilateral-branch network with cumulative learning for long-tailed visual recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:9719-9728. [4] WU T,HUANG Q,LIU Z,et al.Distribution-balanced loss for multi-label classification in long-tailed datasets[C]//European Conference on Computer Vision.Cham:Springer,2020:162-178. [5] LIN T Y,GOYAL P,GIRSHICK R,et al.Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision.2017:2980-2988. [6] BEN-BARUCH E,RIDNIK T,ZAMIR N,et al.AsymmetricLoss For Multi-Label Classification[EB/OL].(2020-09-29)[2021-05-18].https://arxiv.org/abs/2009.14119. [7] GONG Y,JIA Y,LEUNG T,et al.Deep convolutional ranking for multilabel image annotation[EB/OL].(2013-12-17)[2014-04-14].https://arxiv.org/abs/1312.4894. [8] SHENG L,MA J F,YANG R X.Research on CNN Image Clas-sification Algorithm Based on Feature Exchange[J].Computer Engineering,2016,29(6):927-933. [9] WANG Z,CHEN T,LI G,et al.Multi-label image recognition by recurrently discovering attentional regions[C]//Proceedings of the IEEE International Conference on Computer Vision.2017:464-472. [10] WANG M,LUO C,HONG R,et al.Beyond object proposals:Random crop pooling for multi-label image recognition[J].IEEE Transactions on Image Processing,2016,25(12):5678-5688. [11] WANG Y B,ZHENG W J,CHEN Y S.Multi label classification algorithm based on PLSA learning probability distribution semantic information[J].Journal of Nanjing University(Natural Science),2016,29(6):927-933. [12] YOU R,GUO Z,CUI L,et al.Cross-modality attention with semantic graph embedding for multi-label classification[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020,34(7):12709-12716. [13] CHEN T,XU M,HUI X,et al.Learning semantic-specific graph representation for multi-label image recognition[C]//Procee-dings of the IEEE/CVF International Conference on Computer Vision.2019:522-531. [14] GU G H,CAO Y Y,LI G.Image Hierarchical Classification Based on Semantic Label Generation and Partial Order Structure[J].Journal of Software,2016,29(6):927-933. [15] WANG Y,XIE Y,LIU Y,et al.Fast Graph Convolution Network Based Multi-label Image Recognition via Cross-modal Fusion[C]//Proceedings of the 29th ACM International Confe-rence on Information & Knowledge Management.2020:1575-1584. [16] LIU Z,MIAO Z,ZHAN X,et al.Large-scale long-tailed recognition in an open world[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:2537-2546. [17] CUI Y,JIA M,LIN T Y,et al.Class-balanced loss based on effe-ctive number of samples[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:9268-9277. [18] HAYAT M,KHAN S,ZAMIR W,et al.Max-margin class imbalanced learning with gaussian affinity[J].arXiv:1901.07711,2019. [19] FELZENSZWALB P F,GIRSHICK R B,MCALLESTER D,et al.Object detection with discriminatively trained part-based models[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,32(9):1627-1645. [20] LI B,LIU Y,WANG X.Gradient harmonized single-stage detector[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2019,33(1):8577-8584. [21] SHRIVASTAVA A,GUPTA A,GIRSHICK R.Training re-gion-based object detectors with online hard example mining[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:761-769. [22] EVERINGHAM M,VAN GOOL L,WILLIAMS C K I,et al.The pascal visual object classes (voc) challenge[J].InternationalJournal of Computer Vision,2010,88(2):303-338. [23] LIN T Y,MAIRE M,BELONGIE S,et al.Microsoft coco:Common objects in context[C]//European Conference on Computer Vision.Cham:Springer,2014:740-755. [24] SHEN L,LIN Z,HUANG Q.Relay backpropagation for effective learning of deep convolutional neural networks[C]//European Conference on Computer Vision.Cham:Springer,2016:467-482. |
[1] | XU Yong-xin, ZHAO Jun-feng, WANG Ya-sha, XIE Bing, YANG Kai. Temporal Knowledge Graph Representation Learning [J]. Computer Science, 2022, 49(9): 162-171. |
[2] | RAO Zhi-shuang, JIA Zhen, ZHANG Fan, LI Tian-rui. Key-Value Relational Memory Networks for Question Answering over Knowledge Graph [J]. Computer Science, 2022, 49(9): 202-207. |
[3] | TANG Ling-tao, WANG Di, ZHANG Lu-fei, LIU Sheng-yun. Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy [J]. Computer Science, 2022, 49(9): 297-305. |
[4] | WU Hong-xin, HAN Meng, CHEN Zhi-qiang, ZHANG Xi-long, LI Mu-hang. Survey of Multi-label Classification Based on Supervised and Semi-supervised Learning [J]. Computer Science, 2022, 49(8): 12-25. |
[5] | WANG Jian, PENG Yu-qi, ZHAO Yu-fei, YANG Jian. Survey of Social Network Public Opinion Information Extraction Based on Deep Learning [J]. Computer Science, 2022, 49(8): 279-293. |
[6] | HAO Zhi-rong, CHEN Long, HUANG Jia-cheng. Class Discriminative Universal Adversarial Attack for Text Classification [J]. Computer Science, 2022, 49(8): 323-329. |
[7] | JIANG Meng-han, LI Shao-mei, ZHENG Hong-hao, ZHANG Jian-peng. Rumor Detection Model Based on Improved Position Embedding [J]. Computer Science, 2022, 49(8): 330-335. |
[8] | SUN Qi, JI Gen-lin, ZHANG Jie. Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection [J]. Computer Science, 2022, 49(8): 172-177. |
[9] | HU Yan-yu, ZHAO Long, DONG Xiang-jun. Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification [J]. Computer Science, 2022, 49(7): 73-78. |
[10] | CHENG Cheng, JIANG Ai-lian. Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction [J]. Computer Science, 2022, 49(7): 120-126. |
[11] | HOU Yu-tao, ABULIZI Abudukelimu, ABUDUKELIMU Halidanmu. Advances in Chinese Pre-training Models [J]. Computer Science, 2022, 49(7): 148-163. |
[12] | ZHOU Hui, SHI Hao-chen, TU Yao-feng, HUANG Sheng-jun. Robust Deep Neural Network Learning Based on Active Sampling [J]. Computer Science, 2022, 49(7): 164-169. |
[13] | SU Dan-ning, CAO Gui-tao, WANG Yan-nan, WANG Hong, REN He. Survey of Deep Learning for Radar Emitter Identification Based on Small Sample [J]. Computer Science, 2022, 49(7): 226-235. |
[14] | WANG Jun-feng, LIU Fan, YANG Sai, LYU Tan-yue, CHEN Zhi-yu, XU Feng. Dam Crack Detection Based on Multi-source Transfer Learning [J]. Computer Science, 2022, 49(6A): 319-324. |
[15] | CHU Yu-chun, GONG Hang, Wang Xue-fang, LIU Pei-shun. Study on Knowledge Distillation of Target Detection Algorithm Based on YOLOv4 [J]. Computer Science, 2022, 49(6A): 337-344. |
|