Computer Science ›› 2020, Vol. 47 ›› Issue (9): 185-189.doi: 10.11896/jsjkx.190900001
• Artificial Intelligence • Previous Articles Next Articles
PAN Zu-jiang1, LIU Ning1, ZHANG Wei2, WANG Jian-yong1
CLC Number:
[1] PATTERSON C.World Alzheimer Report 2018—The state of the art of dementia research:New frontiers[R].Alzheimer’s Disease International (ADI):London,UK,2018. [2] WANG Q,SUN M,ZHAN L,et al.Multi-Modality DiseaseModeling via Collective Deep Matrix Factorization[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.ACM,2017:1155-1164. [3] DAI P,GWADRY-SRIDHAR F,BAUER M,et al.Healthy cognitive aging:A hybrid random vector functional-link model for the analysis of alzheimer’s disease[C]//Thirty-First AAAI Conference on Artificial Intelligence.2017. [4] HUANG G B,ZHU Q Y,SIEW C K.Extreme learning ma-chine:theory and applications[J].Neurocomputing,2006,70(1/2/3):489-501. [5] HINTON G,DENG L,YU D,et al.Deep neural networks for acoustic modeling in speech recognition[J].IEEE Signal proces-sing magazine,2012,29(6):82-97. [6] LECUN Y,BENGIO Y,HINTON G.Deep learning[J].Nature,2015,521(7553):436. [7] TUFAIL A B,ABIDI A,SIDDIQUI A M,et al.Automatic classification of initial categories of Alzheimer’s disease from structural MRI phase images:a comparison of PSVM,KNN and ANN methods[J].Age,2012,2012:1731. [8] LEBEDEV A V,WESTMAN E,VAN WESTEN G J P,et al.Random Forest ensembles for detection and prediction of Alzheimer's disease with a good between-cohort robustness[J].NeuroImage:Clinical,2014,6:115-125. [9] LÓPEZ M,RAMÍREZ J,GÓRRIZ J M,et al.Principal component analysis-based techniques and supervised classification schemes for the early detection of Alzheimer's disease[J].Neurocomputing,2011,74(8):1260-1271. [10] SHI B,CHEN Y,HOBBS K,et al.Nonlinear Metric Learning for Alzheimer’s Disease Diagnosis with Integration of Longitudinal Neuroimaging Features[C]//BMVC.2015. [11] DAI P,GWADRY-SRIDHAR F,BAUER M,et al.Bagging ensembles for the diagnosis and prognostication of alzheimer’s di-sease[C]//Thirtieth AAAI Conference on Artificial Intelligence.2016. [12] XING E P,JORDAN M I,RUSSELL S J,et al.Distance metric learning with application to clustering with side-information[C]//Advances in neural information processing systems.2003:521-528. [13] LIN T,ZHA H.Riemannian manifold learning[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2008,30(5):796-809. [14] 邱锡鹏.神经网络与深度学习[OL].[2017-04-21].https://nndl.github.io/. [15] BAHDANAU D,CHO K,BENGIO Y.Neural machine translation by jointly learning to align and translate[J].arXiv:1409.0473,2014. [16] YANG Z,YANG D,DYER C,et al.Hierarchical attention networks for document classification[C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.2016:1480-1489. [17] MNIH V,HEESS N,GRAVES A.Recurrent models of visualattention[C]//Advances in Neural Information Processing Systems.2014:2204-2212. [18] YANG Y,YANG L,ZOU Y B,et al.Humor Recognition Based on Linguistic Features and Hierarchical Attention Mechanism[J].Computer Engineering,2020,46(8):64-71. [19] CHOI E,BAHADORI M T,SUN J,et al.Retain:An interpretable predictive model for healthcare using reverse time attention mechanism[C]//Advances in Neural Information Processing Systems.2016:3504-3512. [20] COLLOBERT R,WESTON J.A unified architecture for natural language processing:Deep neural networks with multitask lear-ning[C]//Proceedings of the 25th International Conference on Machine Learning.ACM,2008:160-167. [21] ZHANG W J.An Online Multi-Task Learning Algorithm Based on Weight Matrix Decomposition[J].Computer Engineering,2019,45(8):190-197. [22] DENG L,HINTON G,KINGSBURY B.New types of deep neural network learning for speech recognition and related applications:An overview[C]//2013 IEEE International Conference on Acoustics,Speech and Signal Processing.IEEE,2013:8599-8603. [23] GIRSHICK R.Fast r-cnn[C]//Proceedings of the IEEE International Conference on Computer Vision.2015:1440-1448. [24] RAMSUNDAR B,KEARNES S,RILEY P,et al.Massivelymultitask networks for drug discovery[J].arXiv:1502.02072,2015. [25] RUDER S.An overview of multi-task learning in deep neuralnetworks[J].arXiv:1706.05098,2017. [26] CARUANA R.Multitask learning[J].Machine Learning,1997,28(1):41-75. [27] BAXTER J.A Bayesian/information theoretic model of learning to learn via multiple task sampling[J].Machine Learning,1997,28(1):7-39. [28] HOCHREITER S,SCHMIDHUBER J.Long short-term memo-ry[J].Neural Computation,1997,9(8):1735-1780. [29] KINGMA D P,BA J.Adam:A method for stochastic optimization[J].arXiv:1412.6980,2014. [30] WEINER M W,VEITCH D P,AISEN P S,et al.The Alzhemer’sDisease Neuroimaging Initiative:a review of papers published since its inception[J].Alzheimer’s & Dementia,2013,9(5):e111-e194. |
[1] | ZHOU Fang-quan, CHENG Wei-qing. Sequence Recommendation Based on Global Enhanced Graph Neural Network [J]. Computer Science, 2022, 49(9): 55-63. |
[2] | DAI Yu, XU Lin-feng. Cross-image Text Reading Method Based on Text Line Matching [J]. Computer Science, 2022, 49(9): 139-145. |
[3] | ZHOU Le-yuan, ZHANG Jian-hua, YUAN Tian-tian, CHEN Sheng-yong. Sequence-to-Sequence Chinese Continuous Sign Language Recognition and Translation with Multi- layer Attention Mechanism Fusion [J]. Computer Science, 2022, 49(9): 155-161. |
[4] | XIONG Li-qin, CAO Lei, LAI Jun, CHEN Xi-liang. Overview of Multi-agent Deep Reinforcement Learning Based on Value Factorization [J]. Computer Science, 2022, 49(9): 172-182. |
[5] | RAO Zhi-shuang, JIA Zhen, ZHANG Fan, LI Tian-rui. Key-Value Relational Memory Networks for Question Answering over Knowledge Graph [J]. Computer Science, 2022, 49(9): 202-207. |
[6] | JIANG Meng-han, LI Shao-mei, ZHENG Hong-hao, ZHANG Jian-peng. Rumor Detection Model Based on Improved Position Embedding [J]. Computer Science, 2022, 49(8): 330-335. |
[7] | WANG Ming, PENG Jian, HUANG Fei-hu. Multi-time Scale Spatial-Temporal Graph Neural Network for Traffic Flow Prediction [J]. Computer Science, 2022, 49(8): 40-48. |
[8] | ZHU Cheng-zhang, HUANG Jia-er, XIAO Ya-long, WANG Han, ZOU Bei-ji. Deep Hash Retrieval Algorithm for Medical Images Based on Attention Mechanism [J]. Computer Science, 2022, 49(8): 113-119. |
[9] | SUN Qi, JI Gen-lin, ZHANG Jie. Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection [J]. Computer Science, 2022, 49(8): 172-177. |
[10] | YAN Jia-dan, JIA Cai-yan. Text Classification Method Based on Information Fusion of Dual-graph Neural Network [J]. Computer Science, 2022, 49(8): 230-236. |
[11] | JIN Fang-yan, WANG Xiu-li. Implicit Causality Extraction of Financial Events Integrating RACNN and BiLSTM [J]. Computer Science, 2022, 49(7): 179-186. |
[12] | XIONG Luo-geng, ZHENG Shang, ZOU Hai-tao, YU Hua-long, GAO Shang. Software Self-admitted Technical Debt Identification with Bidirectional Gate Recurrent Unit and Attention Mechanism [J]. Computer Science, 2022, 49(7): 212-219. |
[13] | PENG Shuang, WU Jiang-jiang, CHEN Hao, DU Chun, LI Jun. Satellite Onboard Observation Task Planning Based on Attention Neural Network [J]. Computer Science, 2022, 49(7): 242-247. |
[14] | ZHANG Ying-tao, ZHANG Jie, ZHANG Rui, ZHANG Wen-qiang. Photorealistic Style Transfer Guided by Global Information [J]. Computer Science, 2022, 49(7): 100-105. |
[15] | ZENG Zhi-xian, CAO Jian-jun, WENG Nian-feng, JIANG Guo-quan, XU Bin. Fine-grained Semantic Association Video-Text Cross-modal Entity Resolution Based on Attention Mechanism [J]. Computer Science, 2022, 49(7): 106-112. |
|