Computer Science ›› 2022, Vol. 49 ›› Issue (9): 202-207.doi: 10.11896/jsjkx.220300277
• Artificial Intelligence • Previous Articles Next Articles
RAO Zhi-shuang1, JIA Zhen1, ZHANG Fan1,2, LI Tian-rui1,2,3
CLC Number:
[1]BOLLACKER K,EVANS C,PARITOSH P,et al.Freebase:a collaboratively created graph database for structuring human knowledge[C]//Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data.2008:1247-1250. [2]SUCHANEK F M,KASNECI G,WEIKUM G.Yago:a core of semantic knowledge[C]//Proceedings of the 16th International Conference on World Wide Web.2007:697-706. [3]YAO X,VAN DURME B.Information extraction over struc-tured data:question answering with freebase[C]//Proceedings of the 52nd Annual Meeting of the Association for ComputationalLinguistics(Volume 1:Long Papers).2014:956-966. [4]DONG L,WEI F,ZHOU M,et al.Question answering overfreebase with multi-column convolutional neural networks[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing(Volume 1:Long Papers).2015:260-269. [5]LECUN Y,BENGIO Y.Convolutional networks for images,speech,and time series[J].The Handbook of Brain Theory and Neural Networks,1995,3361(10):1995. [6]ZHANG S,FENG Y,HUANG S,et al.Semantic interpretation of superlative expressionsvia structured knowledge bases[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing(Volume 2:Short Papers).2015:225-230. [7]WESTON J,CHOPRA S,BORDES A.Memory Networks[J].arXiv:1410.3916,2015. [8]MILLER A,FISCH A,DODGE J,et al.Key-Value MemoryNetworks for Directly Reading Documents[J].arXiv:1606.03126,2016. [9]TUNSTALL-PEDOE W.True knowledge:Open-domain ques-tion answering using structuredknowledge and inference[J].AI Magazine,2010,31(3):80-92. [10]BERANT J,CHOU A,FROSTIG R,et al.Semantic parsing on freebase from question-answer pairs[C]//Proceedings of the 2013 International Conference on Empirical Methods in Natural Language Processing.2013:1533-1544. [11]REDDY S,LAPATA M,STEEDMAN M.Large-scale semantic parsing without question-answer pairs[J].Transactions of the Association for Computational Linguistics,MIT Press,2014,2:377-392. [12]HAKIMOV S,UNGER C,WALTER S,et al.Applying semantic parsing to question answering over linked data:addressing the lexical gap[C]//International Conference on Applications of Natural Language to Information Systems.2015:103-109. [13]UNGER C,BÜHMANN L,LEHMANN J,et al.Template-based question answering over RDF data[C]//Proceedings of the 21st International Conference on World Wide Web.2012:639-648. [14]DONG L,LAPATA M.Language to logical form with neural attention[J].arXiv:1601.01280,2016. [15]CUI W,XIAO Y,WANG H,et al.KBQA:learning question answering over QA corpora and knowledge bases[J].arXiv:1903.02419,2019. [16]BORDES A,CHOPRA S,WESTON J.Question answering withsubgraph embeddings[J].arXiv:1406.3676,2014. [17]BORDES A,WESTON J,USUNIER N.Open question answe-ring with weakly supervised embedding models[C]//Joint European Conference on Machine Learning and Knowledge Discovery in Databases.2014:165-180. [18]HE X,GOLUB D.Character-level question answering with at-tention[C]//Proceedings of the 2016 International Conference on Empirical Methods in Natural Language Processing.2016:1598-1607. [19]HUANG X,ZHANG J,LI D,et al.Knowledge graph embedding based question answering[C]//Proceedings of the Twelfth ACM International Conference on Web Search and Data Mi-ning.2019:105-113. [20]SAXENA A,TRIPATHI A,TALUKDAR P.Improving Multi-hop Question Answering over Knowledge Graphs using Know-ledge Base Embeddings[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.Online:Association for Computational Linguistics,2020:4498-4507. [21]LU Q,PAN Z S,XIE J.Bidirectional Attention Question An-swering Model Combining Knowledge Representation Learning[J].Computer Engineering and Applications,2021,57(23):171-177. [22]LIU X L,HAN F,WANG Z J.Joint Question Answering Model Based on Knowledge Representation[J].Computer Science,2021,48(6):241-245. [23]BAO J,DUAN N,YANZ,et al.Constraint-based question answering with knowledge graph[C]//Proceedings of the 26th International Conference on Computational Linguistics:Technical Papers.2016:2503-2514. [24]BERANT J,LIANG P.Semantic parsing via paraphrasing[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics(Volume 1:Long Papers).2014:1415-1425. [25]BAST H,HAUSSMANN E.More accurate question answering on freebase[C]//Proceedings of the 24th ACM International on Conference on Informationand Knowledge Management.2015:1431-1440. [26]ABUJABAL A,YAHYA M,RIEDEWALD M,et al.Automated template generation for question answering over knowledge graphs[C]//Proceedings of the 26th International Conference on World Wide Web.2017:1191-1200. [27]HU S,ZOU L,YU J X,et al.Answering natural language questions by subgraph matching over knowledge graphs[J].IEEE Transactions on Knowledge and Data Engineering,2017,30(5):824-837. [28]YANG M C,DUAN N,ZHOU M,et al.Joint relational embeddings for knowledge-based question answering[C]//Proceedings of the 2014 International Conference on Empirical Methods in Natural Language Processing.2014:645-650. [29]YAMADA I,ASAI A,SAKUMA J,et al.Wikipedia2Vec:An efficient toolkit for learning and visualizing the embeddings of words and entities from Wikipedia[J].arXiv:1812.06280,2018. [30]BORDES A,USUNIER N,CHOPRA S,et al.Large-scale simple question answering with memory networks[J].arXiv:1506.02075,2015. [31]XU K,REDDY S,FENG Y,et al.Question answering on freebase via relation extraction and textual evidence[J].arXiv:1603.00957,2016. [32]HAO Y,ZHANG Y,LIU K,et al.An end-to-end model forquestion answering over knowledge base with cross-attention combining global knowledge[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics(Volume 1:Long Papers).2017:221-231. [33]XU K,LAI Y,FENG Y,et al.Enhancing Key-Value Memory Neural Networks for Knowledge Based Question Answering[C]//Proceedings of the 2019 Conference of the North.Minneapolis,Minnesota:Association for Computational Linguistics,2019:2937-2947. |
[1] | WU Zi-yi, LI Shao-mei, JIANG Meng-han, ZHANG Jian-peng. Ontology Alignment Method Based on Self-attention [J]. Computer Science, 2022, 49(9): 215-220. |
[2] | KONG Shi-ming, FENG Yong, ZHANG Jia-yun. Multi-level Inheritance Influence Calculation and Generalization Based on Knowledge Graph [J]. Computer Science, 2022, 49(9): 221-227. |
[3] | TANG Ling-tao, WANG Di, ZHANG Lu-fei, LIU Sheng-yun. Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy [J]. Computer Science, 2022, 49(9): 297-305. |
[4] | ZHOU Fang-quan, CHENG Wei-qing. Sequence Recommendation Based on Global Enhanced Graph Neural Network [J]. Computer Science, 2022, 49(9): 55-63. |
[5] | DAI Yu, XU Lin-feng. Cross-image Text Reading Method Based on Text Line Matching [J]. Computer Science, 2022, 49(9): 139-145. |
[6] | ZHOU Le-yuan, ZHANG Jian-hua, YUAN Tian-tian, CHEN Sheng-yong. Sequence-to-Sequence Chinese Continuous Sign Language Recognition and Translation with Multi- layer Attention Mechanism Fusion [J]. Computer Science, 2022, 49(9): 155-161. |
[7] | XU Yong-xin, ZHAO Jun-feng, WANG Ya-sha, XIE Bing, YANG Kai. Temporal Knowledge Graph Representation Learning [J]. Computer Science, 2022, 49(9): 162-171. |
[8] | XIONG Li-qin, CAO Lei, LAI Jun, CHEN Xi-liang. Overview of Multi-agent Deep Reinforcement Learning Based on Value Factorization [J]. Computer Science, 2022, 49(9): 172-182. |
[9] | WANG Jian, PENG Yu-qi, ZHAO Yu-fei, YANG Jian. Survey of Social Network Public Opinion Information Extraction Based on Deep Learning [J]. Computer Science, 2022, 49(8): 279-293. |
[10] | HAO Zhi-rong, CHEN Long, HUANG Jia-cheng. Class Discriminative Universal Adversarial Attack for Text Classification [J]. Computer Science, 2022, 49(8): 323-329. |
[11] | JIANG Meng-han, LI Shao-mei, ZHENG Hong-hao, ZHANG Jian-peng. Rumor Detection Model Based on Improved Position Embedding [J]. Computer Science, 2022, 49(8): 330-335. |
[12] | WANG Ming, PENG Jian, HUANG Fei-hu. Multi-time Scale Spatial-Temporal Graph Neural Network for Traffic Flow Prediction [J]. Computer Science, 2022, 49(8): 40-48. |
[13] | QIN Qi-qi, ZHANG Yue-qin, WANG Run-ze, ZHANG Ze-hua. Hierarchical Granulation Recommendation Method Based on Knowledge Graph [J]. Computer Science, 2022, 49(8): 64-69. |
[14] | ZHU Cheng-zhang, HUANG Jia-er, XIAO Ya-long, WANG Han, ZOU Bei-ji. Deep Hash Retrieval Algorithm for Medical Images Based on Attention Mechanism [J]. Computer Science, 2022, 49(8): 113-119. |
[15] | SUN Qi, JI Gen-lin, ZHANG Jie. Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection [J]. Computer Science, 2022, 49(8): 172-177. |
|