Computer Science ›› 2020, Vol. 47 ›› Issue (11A): 183-187.doi: 10.11896/jsjkx.200300012
• Computer Graphics & Multimedia • Previous Articles Next Articles
CHEN Xun-min, YE Shu-han, ZHAN Rui
CLC Number:
[1] FU H,MA H,XIAO H.Scene adaptive accurate and fast vertical crowd counting via joint using depth and color information[J].Multimedia Tools and Applications,2014,73(1):273-289. [2] WEI WU,ZHANG Q S,WANG M J,et al.Detection of traffic parameters based on computer vision and image processing[J].Information and Control,2001,30(3):257-261. [3] FRENCH G,FISHER M,MACKIEWICZ M,et al.Convolutionalneural networks for counting fish in fisheries surveillancevi-deo[C]//British Machine Vision Conference.2015:23-32. [4] RYAN D,DENMON S,SRIDHARAN S,et al.An evaluation of crowd counting methods,features and regression models[J].Computer Vision and Image Understanding,2015,130:1-17. [5] VIOLA P,JONES M J.Robust Real time face detection[J].International Journal of Computer Vision,2004,57(2):137-154. [6] DALAL N,TRIGGS B.Histograms of oriented gradients forhuman detection[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition.IEEE Computer Society,2005:886-893. [7] HAAR A.Zur Theorie der orthogonalen Funktionen systeme[J].Mathematische Annalen,1911,71(1):38-53. [8] WU B,NEVATIA R.Detection of multiple,partially occludedhumans in a single image by Bayesian combination of edgelet part detectors[C]//Tenth IEEE International Conference on Computer Vision,2005(ICCV 2005).IEEE,2005:90-97. [9] HEARTS M A,DUMAIS S T,OSMAN E,et al.Support vector machines[J].IEEE Intelligent Systems,1998,13(4):18-28. [10] LIN S F,CHEN J Y,CHAO H X.Estimation of number of people in crowded scenes using perspective transformation[J].IEEE Transactions on Systems,Man & Cybernetics Part A (Systems & Humans),2001,31(6):645-654. [11] VIOLA P,JONES M,SNOW D.Detecting pedestrians usingpatterns of motion and appearance[J].International Journal of Computer Vision,2005,63(2):153-161. [12] CHAN A B,LIANG Z S J,VASCONCELOS N.Privacy preserving crowd monitoring:counting people without people models or tracking[C]//Proceedings of the2008 IEEE Conference on Computer Vision and Pattern Recognition.IEEE Computer Socie-ty,2008:1-7. [13] CHAN A B,VASCONCELOS N.Bayesian poisson regression for crowd counting[C]//2009 IEEE 12th International Conference on Computer Vision.IEEE,2009:545-551. [14] RYAN D,DENMAN S,FOOKES C B,et al.Crowd counting using multiple local features[C]//2009 Digital Image Computing:Techniques and Applications.IEEE,2009:81-88. [15] LEMPITSKY V,ZISSERMAN A.Learning to count objects in images[C]//In Advances in Neural Information Processing Systems,2010:1324-1332. [16] OJALA T,PIETIKAINEN,M,MAENPAA,T.Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2002,24(7):971-987. [17] PARAGIOS N,RAMESH V.A MRF-based approach for real-time subway monitoring[C]//Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR 2001).IEEE,2001:1034-1040. [18] PHAM V Q,KOZAKAYA T,YAMAGUCHI O,et al.Count Forest:Covoting Uncertain Number of Targets using Random Forest for Crowd Density Estimation[C]//International Confe-rence on Computer Vision (ICCV 2015).IEEE,2015:3253-3261. [19] ZHANG Y,ZHAN D,CHEN S,et al.Single-image crowdcounting via multi-column convolutional neural network[C]//IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2016:589-597. [20] SAM D B,SURYA S,BABU R V.Switching ConvolutionalNeural Network for Crowd Counting[C]//2017IEEE Conference on Computer Vision and Pattern Recognition (CVPR).IEEE,2017:4031-4039. [21] LI Y,ZHANG X,CHEN D.CSRNet:dilated convolutional neural networks for understanding the highly congested scenes[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:1091-1100. [22] KANG K,WANG X.Fully convolutional neural networks forcrowd segmentation[J].Computer Science,2014,49(1):25-30. [23] KINGMA D P,BA J.Adam:A method for stochastic optimization[J].arXiv:1412.6980,2014. [24] ZHANG C,LI H,WANG X,et al.Cross-scene crowd counting via deep convolutional neural networks[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).IEEE,2015:833-841. [25] CAO X,WANG Z,ZHAO Y,et al.Scale aggregation network for accurate and efficient crowd counting[C]//Proceedings of the European Conference on Computer Vision (ECCV).2018:734-750. |
[1] | ZHOU Le-yuan, ZHANG Jian-hua, YUAN Tian-tian, CHEN Sheng-yong. Sequence-to-Sequence Chinese Continuous Sign Language Recognition and Translation with Multi- layer Attention Mechanism Fusion [J]. Computer Science, 2022, 49(9): 155-161. |
[2] | CHEN Yong-quan, JIANG Ying. Analysis Method of APP User Behavior Based on Convolutional Neural Network [J]. Computer Science, 2022, 49(8): 78-85. |
[3] | ZHU Cheng-zhang, HUANG Jia-er, XIAO Ya-long, WANG Han, ZOU Bei-ji. Deep Hash Retrieval Algorithm for Medical Images Based on Attention Mechanism [J]. Computer Science, 2022, 49(8): 113-119. |
[4] | DAI Zhao-xia, LI Jin-xin, ZHANG Xiang-dong, XU Xu, MEI Lin, ZHANG Liang. Super-resolution Reconstruction of MRI Based on DNGAN [J]. Computer Science, 2022, 49(7): 113-119. |
[5] | LIU Yue-hong, NIU Shao-hua, SHEN Xian-hao. Virtual Reality Video Intraframe Prediction Coding Based on Convolutional Neural Network [J]. Computer Science, 2022, 49(7): 127-131. |
[6] | XU Ming-ke, ZHANG Fan. Head Fusion:A Method to Improve Accuracy and Robustness of Speech Emotion Recognition [J]. Computer Science, 2022, 49(7): 132-141. |
[7] | YANG Yue, FENG Tao, LIANG Hong, YANG Yang. Image Arbitrary Style Transfer via Criss-cross Attention [J]. Computer Science, 2022, 49(6A): 345-352. |
[8] | YANG Jian-nan, ZHANG Fan. Classification Method for Small Crops Combining Dual Attention Mechanisms and Hierarchical Network Structure [J]. Computer Science, 2022, 49(6A): 353-357. |
[9] | ZHANG Jia-hao, LIU Feng, QI Jia-yin. Lightweight Micro-expression Recognition Architecture Based on Bottleneck Transformer [J]. Computer Science, 2022, 49(6A): 370-377. |
[10] | WANG Jian-ming, CHEN Xiang-yu, YANG Zi-zhong, SHI Chen-yang, ZHANG Yu-hang, QIAN Zheng-kun. Influence of Different Data Augmentation Methods on Model Recognition Accuracy [J]. Computer Science, 2022, 49(6A): 418-423. |
[11] | SUN Jie-qi, LI Ya-feng, ZHANG Wen-bo, LIU Peng-hui. Dual-field Feature Fusion Deep Convolutional Neural Network Based on Discrete Wavelet Transformation [J]. Computer Science, 2022, 49(6A): 434-440. |
[12] | DU Li-jun, TANG Xi-lu, ZHOU Jiao, CHEN Yu-lan, CHENG Jian. Alzheimer's Disease Classification Method Based on Attention Mechanism and Multi-task Learning [J]. Computer Science, 2022, 49(6A): 60-65. |
[13] | WU Zi-bin, YAN Qiao. Projected Gradient Descent Algorithm with Momentum [J]. Computer Science, 2022, 49(6A): 178-183. |
[14] | ZHAO Zheng-peng, LI Jun-gang, PU Yuan-yuan. Low-light Image Enhancement Based on Retinex Theory by Convolutional Neural Network [J]. Computer Science, 2022, 49(6): 199-209. |
[15] | ZHANG Wen-xuan, WU Qin. Fine-grained Image Classification Based on Multi-branch Attention-augmentation [J]. Computer Science, 2022, 49(5): 105-112. |
|