Computer Science ›› 2021, Vol. 48 ›› Issue (9): 146-152.doi: 10.11896/jsjkx.200800200
• Computer Graphics & Multimedia • Previous Articles Next Articles
ZHANG Xin-feng, SONG Bo
CLC Number:
[1]LIU X,SONG M,TAO D,et al.Semi-supervised coupled dictionary learning for person re-identification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2014:3550-3557. [2]LIAO S,HU Y,ZHU X,et al.Person re-identification by local maximal occurrence representation and metric learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2015:2197-2206. [3]ZHANG L,XIANG T,GONG S.Learning a discriminative null space for person re-identification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:1239-1248. [4]ZHAO R,OUYANG W,WANG X.Learning mid-level filters for person re-identification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2014:144-151. [5]KOESTINGER M,HIRZER M,WOHLHART P,et al.Large scale metric learning from equivalence constraints[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2012:2288-2295. [6]LUO H,JIANG W,FAN X,et al.A survey on deep learning based person re-identiflcation[J].Acta Automatica Sinica,2019,45(11):2032-2049. [7]ZHENG L,YANG Y,HAUPTMANN A G.Person re-identification:Past,present and future[J].arXiv:1610.02984,2016. [8]HERMANS A,BEYER L,LEIBE B.In defense of the tripletloss for person re-identification[J].arXiv:1703.07737. [9]YI D,LEI Z,LIAO S,et al.Deep metric learning for personreidentification[C]//2014 22nd International Conference on Pattern Recognition.IEEE,2014:34-39. [10]LI W,ZHAO R,XIAO T,et al.Deepreid:Deep filter pairingneural network for person re-identification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2014:152-159. [11]ZHENG L,ZHANG H,SUN S,et al.Person re-identification in the wild[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:1367-1376. [12]ZHENG L,HUANG Y,LU H,et al.Pose Invariant Embedding for Deep Person Re-identification[J].arXiv:1701.07732,2017. [13]SU C,LI J,ZHANG S,et al.Pose-driven deep convolutionalmodel for person re-identification[C]//Proceedings of the IEEE International Conference on Computer Vision.2017:3960-3969. [14]LIN Y,ZHENG L,ZHENG Z,et al.Improving Person Re-identification by Attribute and Identity Learning[J].arXiv:1703.07220,2017. [15]SUN Y,ZHENG L,YANG Y,et al.Beyond part models:Person retrieval with refined part pooling (and a strong convolutional baseline)[C]//Proceedings of the European Conference on Computer Vision (ECCV).2018:480-496. [16]WANG G,YUAN Y,CHEN X,et al.Learning discriminative features with multiple granularities for person re-identification[C]//Proceedings of the 26th ACM International Conference on Multi-media.2018:274-282. [17]SCHROFF F,KALENICHENKO D,PHILBIN J.Facenet:Aunified embedding for face recognition and clustering[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2015:815-823. [18]ZHENG Z,ZHENG L,YANG Y.A discriminatively learned cnn embedding for person reidentification[J].ACM Transactions on Multimedia Computing,Communications,and Applications (TOMM),2017,14(1):1-20. [19]YE M,SHEN J,LIN G,et al.Deep Learning for Person Rei-dentification:A Survey and Outlook[J].arXiv:2001.04193,2020. [20]LUO H,GU Y,LIAO X,et al.Bag of tricks and a strong baseline for deep person re-identification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops.2019:1487-1495. [21]HE K,ZHANG X,REN S,et al.Deep residual learning forimage recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [22]ZHENG Z,ZHENG L,YANG Y.Pedestrian alignment network for large-scale person re-identification[J].IEEE Transactions on Circuits and Systems for Video Technology,2018,29(10):3037-3045. [23]ZHENG L,SHEN L,TIAN L,et al.Scalable person re-identification:A benchmark[C]//Proceedings of the IEEE Internatio-nal Conference on Computer Vision.2015:1116-1124. [24]RISTANI E,SOLERA F,ZOU R,et al.Performance measures and a data set for multi-target,multi-camera tracking[C]//European Conference on Computer Vision.Cham:Springer,2016:17-35. [25]ZHAO H,TIAN M,SUN S,et al.Spindle net:Person re-identification with human body region guided feature decomposition and fusion[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:1077-1085. [26]SHAO X,SHUAI H,LIU Q.Person re-identification method combining attribute features[J/OL].Acta Automatica Sinica.https://doi.org/10.16383/j.aas.c190763. |
[1] | DONG Xiao-mei, WANG Rui, ZOU Xin-kai. Survey on Privacy Protection Solutions for Recommended Applications [J]. Computer Science, 2021, 48(9): 21-35. |
[2] | ZHOU Xin-min, HU Yi-gui, LIU Wen-jie, SUN Rong-jun. Research on Urban Function Recognition Based on Multi-modal and Multi-level Data Fusion Method [J]. Computer Science, 2021, 48(9): 50-58. |
[3] | QIAN Meng-wei , GUO Yi. Biased Deep Distance Factorization Algorithm for Top-N Recommendation [J]. Computer Science, 2021, 48(9): 103-109. |
[4] | XU Tao, TIAN Chong-yang, LIU Cai-hua. Deep Learning for Abnormal Crowd Behavior Detection:A Review [J]. Computer Science, 2021, 48(9): 125-134. |
[5] | HE Xiao-hui, QIU Fang-bing, CHENG Xi-jie, TIAN Zhi-hui, ZHOU Guang-sheng. High-resolution Image Building Target Detection Based on Edge Feature Fusion [J]. Computer Science, 2021, 48(9): 140-145. |
[6] | LIN Zhen-xian, ZHANG Meng-kai, WU Cheng-mao, ZHENG Xing-ning. Face Image Inpainting with Generative Adversarial Network [J]. Computer Science, 2021, 48(9): 174-180. |
[7] | HUANG Xiao-sheng, XU Jing. Multi-focus Image Fusion Method Based on PCANet in NSST Domain [J]. Computer Science, 2021, 48(9): 181-186. |
[8] | LIU Li-bo, GOU Ting-ting. Cross-modal Retrieval Combining Deep Canonical Correlation Analysis and Adversarial Learning [J]. Computer Science, 2021, 48(9): 200-207. |
[9] | TIAN Ye, CHEN Hong-wei, WANG Fa-sheng, CHEN Xing-wen. Overview of SLAM Algorithms for Mobile Robots [J]. Computer Science, 2021, 48(9): 223-234. |
[10] | XIE Liang-xu, LI Feng, XIE Jian-ping, XU Xiao-jun. Predicting Drug Molecular Properties Based on Ensembling Neural Networks Models [J]. Computer Science, 2021, 48(9): 251-256. |
[11] | FENG Xia, HU Zhi-yi, LIU Cai-hua. Survey of Research Progress on Cross-modal Retrieval [J]. Computer Science, 2021, 48(8): 13-23. |
[12] | WANG Li-mei, ZHU Xu-guang, WANG De-jia, ZHANG Yong, XING Chun-xiao. Study on Judicial Data Classification Method Based on Natural Language Processing Technologies [J]. Computer Science, 2021, 48(8): 80-85. |
[13] | YE Zhong-yu, WU Meng-lin. Choroidal Neovascularization Segmentation Combining Temporal Supervision and Attention Mechanism [J]. Computer Science, 2021, 48(8): 118-124. |
[14] | GUO Lin, LI Chen, CHEN Chen, ZHAO Rui, FAN Shi-lin, XU Xing-yu. Image Super-resolution Reconstruction Using Recursive ResidualNetwork Based on ChannelAttention [J]. Computer Science, 2021, 48(8): 139-144. |
[15] | LIU Shuai, RUI Ting, HU Yu-cheng, YANG Cheng-song, WANG Dong. Monocular Visual Odometer Based on Deep Learning SuperGlue Algorithm [J]. Computer Science, 2021, 48(8): 157-161. |
|