Computer Science ›› 2021, Vol. 48 ›› Issue (7): 70-76.doi: 10.11896/jsjkx.200600010
Special Issue: Artificial Intelligence Security
• Artificial Intelligence Security • Previous Articles Next Articles
CHENG Xi, CAO Xiao-mei
CLC Number:
[1]JIA Z P,FANG B X,CUI X.ArkHoney:AWeb honeypot based on collaborative mechanism [J].Chinese Journal of Computers,2018,41(2):413-425. [2]OWASP T T.Category:OWASP_TopTen_Projec[EB/OL].[2017].http://owasp.org/index.php/Top10. [3]MITROPOULOS D,LOURIDAS P,POLYCHRONAKIS M,et al.Defending against web application attacks:approaches,challenges and implications[J].IEEE Transactions,2019,16(2):188-203. [4]SU Z,WASSERMANN G.The essence of command injectionattacks in web applications[C]//The 33rd ACM Symposium on Principles of Programming Languages.ACM,2006:372-382. [5]BUEHRER G,WEIDE B W,SIVILOTTI P A G.Using parsetree validation to prevent SQL injection attacks[C]//The 5th International Workshop on Software Engineering and Middleware.ACM,2005:106-113. [6]KEMALIS K,TZOURAMANIS T.SQL-IDS:a specification-based approach for SQL-injection detection[C]//The 2008 ACM Symposium on Applied Computing.ACM,2008:2153-2158. [7]NANDA S,LAM L C,CHIUEH T.Dynamic multiprocess information flow tracking for web application security[C]//The 2007 International Conference on Middleware Companion.ACM,2007:1-20. [8]HEDIN D,BIRGISSON A,BELLO L,et al.JSFlow:Trackinginformation flow in javascript and its APIs[C]//The 29th Annual ACM Symposium on Applied Computing.ACM,2014:1663-1671. [9]GIFFIN D B,LEVY A,STEFAN D,et al.Hails:protecting data privacy in untrusted web applications[C]//The 10th USENIX Conference on Operating Systems Design and Implementation.USENIX Association,2012:47-60. [10]ZHANG L,CUI Y,LIU J.Application of machine learning in cyberspace security research[J].Chinese Journal of Computers,2018,41(9):1943-1975. [11]LIANG L M,LIU B W,YANG H L,et al.Supervised retinal vessel extraction based on multi-feature fusion[J].Chinese Journal of Computers,2018,41(11):2566-2580. [12]HE G C,LIU X B.Unsupervised visual representation learning based on image triples mining[J].Chinese Journal of Compu-ters,2018,41(12):2787-2803. [13]QIN Y,DING S F.A review of semi-supervised clustering[J].Computer Science,2019,46(9):15-21. [14]HUANG J H,DING Y Z,XIAO L,et al.A Cache Scheduling Scheme for Embedded System Resistance Against Denial of Service Attacks Based on Reinforcement Learning[J].Computer Science,2020,47(7):282-286. [15]HABIBI G,SURANTHA N.XSS attack detection with machine learning and n-Gram methods[C]//2020 International Confe-rence on Information Management and Technology (ICIMTech).IEEE,2020:516-520. [16]WEI M,LIU Y,CHEN X,et al.Decision tree applied in web-based intrusion detection system[C]//2010 Second Internatio-nal Conference on Future Networks.IEEE,2010:110-113. [17]DENG X B,YE Y M,LI H B,et al.An improved random forest approach for detection of hidden web search interfaces[C]//2008 International Conference on Machine Learning and Cybernetics.Kunming,IEEE,2008:1586-1591. [18]PATIL R C,PATIL D R.Web spam detection using SVM classifier[C]//2015 IEEE 9th International Conference on Intelligent Systems and Control (ISCO).IEEE,2015:1-4. [19]KAMTUO K,SOOMLEK C.Machine learning for SQL injec-tion prevention on server-side scripting[C]//2016 International Computer Science and Engineering Conference (ICSEC).IEEE,2016:1-6. [20]SUN F Z,ZHANG P,WHITE J,et al.A feasibility study of autonomically detecting in-process cyber-attacks[C]//The 3rd IEEE International Conference on Cybernetics.IEEE,2017:1-8. [21]WU S H,CHENG S B,HU Y.Web attack detection technology based on SVM [J].Computer Science,2015,42(S1):362-364. [22]UWAGBOLE S O,BUCHANAN W J,FAN L.Numerical encoding to tame SQL injection attacks[C]//NOMS 2016-2016 IEEE/IFIP Network Operations and Management Symposium.2016:1253-1256. [23]HU F S,LI C,WANG M,et al.SQL injection detection scheme based on machine learning[J].Computer Engineering and Design,2019,40(6):1554-1558. [24]KOMIYA R,PAIK I,HISADA M.Classification of maliciousweb code by machine learning[C]//2011 3rd International Conference on Awareness Science and Technology(iCAST).IEEE,2012.406-411. [25]LI Q,LI W,WANG J,et al.A SQL injection detection method based on adaptive deep forest[J].IEE EAccess,2019,7(7):145385-145394. [26]LI Q,WANG F,WANG J F,et al.LSTM-Based SQL injection detection method for intelligent transportation system[J].IEEE Transactions on Vehicular Technology,2019,68(5):4182-4191. [27]DAS D,SHARMA U,BHATTACHARYYA D K.DefeatingSQL injection attack in authentication security:an experimental study[J].International Journal of Information Security,2019,18(1):1-22. |
[1] | LENG Dian-dian, DU Peng, CHEN Jian-ting, XIANG Yang. Automated Container Terminal Oriented Travel Time Estimation of AGV [J]. Computer Science, 2022, 49(9): 208-214. |
[2] | NING Han-yang, MA Miao, YANG Bo, LIU Shi-chang. Research Progress and Analysis on Intelligent Cryptology [J]. Computer Science, 2022, 49(9): 288-296. |
[3] | HU An-xiang, YIN Xiao-kang, ZHU Xiao-ya, LIU Sheng-li. Strcmp-like Function Identification Method Based on Data Flow Feature Matching [J]. Computer Science, 2022, 49(9): 326-332. |
[4] | LI Yao, LI Tao, LI Qi-fan, LIANG Jia-rui, Ibegbu Nnamdi JULIAN, CHEN Jun-jie, GUO Hao. Construction and Multi-feature Fusion Classification Research Based on Multi-scale Sparse Brain Functional Hyper-network [J]. Computer Science, 2022, 49(8): 257-266. |
[5] | WANG Xin-tong, WANG Xuan, SUN Zhi-xin. Network Traffic Anomaly Detection Method Based on Multi-scale Memory Residual Network [J]. Computer Science, 2022, 49(8): 314-322. |
[6] | ZHANG Guang-hua, GAO Tian-jiao, CHEN Zhen-guo, YU Nai-wen. Study on Malware Classification Based on N-Gram Static Analysis Technology [J]. Computer Science, 2022, 49(8): 336-343. |
[7] | HE Qiang, YIN Zhen-yu, HUANG Min, WANG Xing-wei, WANG Yuan-tian, CUI Shuo, ZHAO Yong. Survey of Influence Analysis of Evolutionary Network Based on Big Data [J]. Computer Science, 2022, 49(8): 1-11. |
[8] | CHEN Ming-xin, ZHANG Jun-bo, LI Tian-rui. Survey on Attacks and Defenses in Federated Learning [J]. Computer Science, 2022, 49(7): 310-323. |
[9] | XIAO Zhi-hong, HAN Ye-tong, ZOU Yong-pan. Study on Activity Recognition Based on Multi-source Data and Logical Reasoning [J]. Computer Science, 2022, 49(6A): 397-406. |
[10] | YAO Ye, ZHU Yi-an, QIAN Liang, JIA Yao, ZHANG Li-xiang, LIU Rui-liang. Android Malware Detection Method Based on Heterogeneous Model Fusion [J]. Computer Science, 2022, 49(6A): 508-515. |
[11] | LI Ya-ru, ZHANG Yu-lai, WANG Jia-chen. Survey on Bayesian Optimization Methods for Hyper-parameter Tuning [J]. Computer Science, 2022, 49(6A): 86-92. |
[12] | ZHAO Lu, YUAN Li-ming, HAO Kun. Review of Multi-instance Learning Algorithms [J]. Computer Science, 2022, 49(6A): 93-99. |
[13] | ZHOU Zhi-hao, CHEN Lei, WU Xiang, QIU Dong-liang, LIANG Guang-sheng, ZENG Fan-qiao. SMOTE-SDSAE-SVM Based Vehicle CAN Bus Intrusion Detection Algorithm [J]. Computer Science, 2022, 49(6A): 562-570. |
[14] | CAO Yang-chen, ZHU Guo-sheng, SUN Wen-he, WU Shan-chao. Study on Key Technologies of Unknown Network Attack Identification [J]. Computer Science, 2022, 49(6A): 581-587. |
[15] | WANG Fei, HUANG Tao, YANG Ye. Study on Machine Learning Algorithms for Life Prediction of IGBT Devices Based on Stacking Multi-model Fusion [J]. Computer Science, 2022, 49(6A): 784-789. |
|