Computer Science ›› 2022, Vol. 49 ›› Issue (2): 241-247.doi: 10.11896/jsjkx.201200067
• Artificial Intelligence • Previous Articles Next Articles
ZHANG Cheng-rui, CHEN Jun-jie, GUO Hao
CLC Number:
[1]KHALIL H K.Nonlinear Systems[M].Publishing House ofElectronics Industry,2002. [2]OSOBA A,HÄNGGI J,LI M,et al.Disease severity is correlated to tract specific changes of fractional anisotropy in MD and CM thalamus-A DTI study in major depressive disorder[J].Journal of Affective Disorders,2013,149(1/2/3):116-128. [3]LIU F,GUO W,LIU L,et al.Abnormal amplitude low-frequen-cy oscillations in medication-naive,first-episode patients with major depressive disorder:A resting-state fMRI study[J].Journal of Affective Disorders,2012,146(3):401-406. [4]TAN Y J,LU X,WU J,et al.On the invulnerability research of complex networks[J].Systems Engineering Theory and Practice,2008,6:116-120. [5]LO C,SU T W,HUANG C C,et al.Randomization and resi-lience of brain functional networks as systems-level endophenotypes of schizophrenia[J].Proceedings of the National Academy of Sciences,2015,112(29):9123-9128. [6]HE Y,CHEN Z,EVANS A.Structural Insights into AberrantTopological Patterns of Large-Scale Cortical Networks inAlz-heimer's Disease[J].The Journal of Neuroence:The Official Journal of the Society for Neuroence,2008,28(18):4756-4766. [7]AJILORE O,LAMAR M,LEOW A,et al.Graph Theory Analysis of Cortical-Subcortical Networks in Late-Life Depression[J].American Journal of Geriatric Psychiatry,2014,22(2):195-206. [8]JIE B,WEE C Y,SHEN D,et al.Hyper-Connectivity of Functional Networks for Brain Disease Diagnosis[J].Medical Image Analysis,2016,32(17):84-100. [9]WANG M L,HAO X K.Discovering network phenotype be-tween genetic risk factors and disease status via diagnosis-aligned multi-modality regression method in Alzheimer's Disease[J].Bioinformatics,2018(11):11. [10]GUO H,LI Y,XU Y,et al.Resting-State Brain Functional Hyper-Network Construction 1129 Based on Elastic Net and Group Lasso Methods[J].Frontiers in Neuroinformatics,2018,12:25-43. [11]JIN Y Y,GUO H,CHEN J J.Optimization of resting state brain functional hypernetwork construction based on elasticnet me-thod[J].Computer Applied Research,2018,33(11):3276-3280,3297. [12]MEIER L,GEER S V D,BÜHLMANN P.The group Lasso for logistic regression[J].Journal of the Royal Statal Society:Series B (Statal Methodology),2008,70:53-71. [13]FRIEDMAN J,HASTIE T,TIBSHIRANI R.A note on thegroup lasso and a sparse group lasso[J].Stats,2010,34(1):1-8. [14]OGUTU J O,PIEPHO H P.Regularized group regression me-thods for genomic prediction:Bridge,MCP,SCAD,group bridge,group lasso,sparse group lasso,group MCP and group SCAD[J].Bmc Proceedings,2014,8(5):1-9. [15]FORNITO A,ZALESKY A,BREAKSPEAR M.Graph analysis of the human connectome:promise,progress,and pitfalls[J].Neuroimage,2013,80:426-444. [16]ZHANG C,YONG H.Revealing Modular Architecture of Hu-man Brain Structural Networks by Using Cortical Thickness from MRI[J].Cerebral Cortex,2008,18(10):2374-2381. [17]SANTOS G S,GIREESH E D,PLENZ D,et al.Hierarchical Interaction Structure of Neural Activities in Cortical Slice Cultures[J].The Journal of Neuroscience,2010,30(26):8720. [18]TZOURIO-MAZOYER N,LANDEAU B,PAPATHANAS-SIOU D,et al.Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain[J].Neuroimage,2002,15(1):273-289. [19]SANTOS G S,GIREESH E D,PLENZ D,et al.Hierarchical In-teraction Structure of Neural Activities in Cortical Slice Cultures[J].The Journal of Neuroscience,2010,30(26):8720. [20]LI Y,GAO X Q,JIE B,et al.Multimodal Hyper-connectivityNetworks for MCI Classification[J].Medical image computing and computer-assisted intervention:MICCAI.International Conference on Medical Image Computing and Computer-Assisted Intervention,2017,20:433-441. [21]ZU C,YUE G,BRENT M,et al.Identifying disease-related subnetwork connectome biomarkers by sparse hypergraph learning[J].Brain Imaging and Behavior,2018,13:879-892. [22]WEE C Y,YAP P T,ZHANG D,et al.Group-constrainedsparse fMRI connectivity modeling for mild cognitive impairment identification[J].Brain Structure and Function,2014,219(2):641-656. [23]HYEKYOUNG L,DONG S L,HYEJIN K,et al.Sparse Brain Network Recovery Under Compressed Sensing[J].IEEE Tran-sactions on Medical Imaging,2011,30(5):1-31. [24]LIU J,JI S W,YE J P.SLEP:sparse learning with efficient projections[R].Arizona:Arizona State University,2013. [25]YUAN M,LIN Y.Model selection and estimation in regression with grouped variables[J].Journal of the Royal Statal Society:Series B (Statal Methodology),2006,68(1):49-67. [26]PARK H S,JUN C H.A Simple And Fast Algorithm For K-medoids Clustering[J].Expert Systems with Applications,2009,36(Part2):3336-3341. [27]MONTI R P,HYVÄRINEN A.A Unified Probabilistic Model for Learning Latent Factors and Their Connectivities from High-Dimensional Data[J].Conference on Uncertainty in Artificial Intelligence,2018. [28]SUO Q,GUO J L.The structure and dynamics of hypernetworks[J].Systems Engineering-theory & Practice,2017,37(3):720-734. [29]LIANG X,WANG J H,HE Y.Brain connectome study:brain structural network and brain functional network[J].Scientific Bulletin,2010,55(16):1565-1583. [30]ESTRADA E,RODRÍGUEZ-VELÑZQUEZ J A.Subgraph centrality and clustering in complex hyper-networks[J].Physica A,2006,364(none):581-594. [31]WANG F H,WAN N,WANG L,et al.Study on Location and Robustness of Freight High-railway Hypernetwork[J].Tech-noeconomics & Management Research,2017(10):17-23. [32]SMART A G,AMARAL L A N,OTTINO J M.Cascading fai-lure and robustness in metabolic networks[J].Proceedings of the National Academy of Sciences,2008,105(36):13223-13228. [33]IYER S,KILLINGBACK T,SUNDARAM B,et al.Attack robustness and centrality of complex networks[J].PloS one,2013,8(4):1-17. [34]DAI F,LIN J,HU J,et al.Analysis of robustness in electromagnetic compatibility supernetwork[C]//2013 5th IEEE International Symposium on Microwave,Antenna,Propagation and EMC Technologies for Wireless Communications.IEEE,2013:515-518. [35]LU R M,GUO J L.Topological characteristics and robustness analysis of Shanghai public transport super network[J].Mathematics in Practice and Theory,2018,58 (20):131-139. [36]YU W,WANG T,ZHENG Y,et al.Parameter Selection andEvaluation of Robustness of Nanjing Metro Network Based on Supernetwork[J].IEEE Access,2019,7:70876-70890. [37]PEI W D,XIA W,MA X R,et al.Robustness and Statistical Characters of a Class of Complex Network Models[J].Recent Advances in Computer Science and Information Engineering,2012,129:747-752. [38]XIE T Y,KANG K,WANG J J,et al.Robustness analysis of supply chain network with random and intentional attacks[J].Mathematics in Practice and Theory,2018(16):40-47. [39]ZHANG H,WU W,ZHAO L.A study of knowledge supernetworks and network robustness in different business incubators[J].Physica A:Statistical Mechanics and its Applications,2016,447:545-560. [40]ALBERT R,JEONG H,BARABASI A L.Error and attack to-lerance of complex networks[J].Nature,2000,340(6794):378-382. [41]LI Y,SUN C,LI P,et al.Hypernetwork Construction and Feature Fusion Analysis Based on Sparse Group Lasso Method on Functional fMRI Dataset[J].Frontiers in Neuroence,2020,14(60):243-244. [42]LI H,ZHOU H,YANG Y,et al.More randomized and resilient in the topological properties of functional brain networks in patients with major depressive disorder[J].Journal of Clinical Neuroscience Official Journal of the Neurosurgical Society of Australasia,2017,44:274-278. |
[1] | ZHOU Hui, SHI Hao-chen, TU Yao-feng, HUANG Sheng-jun. Robust Deep Neural Network Learning Based on Active Sampling [J]. Computer Science, 2022, 49(7): 164-169. |
[2] | YAN Meng, LIN Ying, NIE Zhi-shen, CAO Yi-fan, PI Huan, ZHANG Lan. Training Method to Improve Robustness of Federated Learning [J]. Computer Science, 2022, 49(6A): 496-501. |
[3] | LI Peng-zu, LI Yao, Ibegbu Nnamdi JULIAN, SUN Chao, GUO Hao, CHEN Jun-jie. Construction and Classification of Brain Function Hypernetwork Based on Overlapping Group Lasso with Multi-feature Fusion [J]. Computer Science, 2022, 49(5): 206-211. |
[4] | MU Jun-fang, ZHENG Wen-ping, WANG Jie, LIANG Ji-ye. Robustness Analysis of Complex Network Based on Rewiring Mechanism [J]. Computer Science, 2021, 48(7): 130-136. |
[5] | HU Yu-wen. Stock Forecast Based on Optimized LSTM Model [J]. Computer Science, 2021, 48(6A): 151-157. |
[6] | ZHANG Qiang, HUANG Zhang-can, TAN Qing, LI Hua-feng, ZHAN Hang. Pyramid Evolution Strategy Based on Dynamic Neighbor Lasso [J]. Computer Science, 2021, 48(6): 215-221. |
[7] | WANG Xue-guang, ZHANG Ai-xin, DOU Bing-lin. Non-linear Load Capacity Model of Complex Networks [J]. Computer Science, 2021, 48(6): 282-287. |
[8] | TONG Xin, WANG Bin-jun, WANG Run-zheng, PAN Xiao-qin. Survey on Adversarial Sample of Deep Learning Towards Natural Language Processing [J]. Computer Science, 2021, 48(1): 258-267. |
[9] | WU Qing-hong, GAO Xiao-dong. Face Recognition in Non-ideal Environment Based on Sparse Representation and Support Vector Machine [J]. Computer Science, 2020, 47(6): 121-125. |
[10] | LU Dong-dong, WU Jie, LIU Peng, SHENG Yong-xiang. Analysis of Key Developer Type and Robustness of Collaboration Network in Open Source Software [J]. Computer Science, 2020, 47(12): 100-105. |
[11] | CHEN Xiao-wen, LIU Guang-shuai, LIU Wang-hua, LI Xu-rui. Blurred Image Recognition Based on LoG Edge Detection and Enhanced Local Phase Quantization [J]. Computer Science, 2020, 47(12): 197-204. |
[12] | ZHAO Sai, LIU Hao, WANG Yu-feng, SU Hang, YAN Ji-wei. Fuzz Testing of Android Inter-component Communication [J]. Computer Science, 2020, 47(11A): 303-309. |
[13] | GAO Li-jian,MAO Qi-rong. Environment-assisted Multi-task Learning for Polyphonic Acoustic Event Detection [J]. Computer Science, 2020, 47(1): 159-164. |
[14] | ZHAO Zhi-gang, ZHOU Gen-gui, LI Hu-xiong. Study on Attack Strategy and Robustness of Complex Weighted Supply Chain Network [J]. Computer Science, 2019, 46(8): 138-144. |
[15] | CHEN Chun-tao, CHEN You-guang. Influence Space Based Robust Fast Search and Density Peak Clustering Algorithm [J]. Computer Science, 2019, 46(11): 216-221. |
|