Computer Science ›› 2024, Vol. 51 ›› Issue (11A): 231100120-7.doi: 10.11896/jsjkx.231100120
• Computer Software & Architecture • Previous Articles Next Articles
PENG Weidong1, GUO Wei1, WEI Lin2
CLC Number:
[1]KIRCHNER A,SIGNORINO C S.Using support vector ma-chines for survey research[J].Survey Practice,2018,11(1):1-10. [2]GONG Y,JIA L.Research on SVM environment performance of parallel computing based on large data set of machine learning[J].The Journal of Supercomputing,2019,75(9):5966-5983. [3]FENG L,LI Z,WANG Y.VLSI design of SVM-based seizure detection system with on-chip learning capability[J].IEEE Transactions on Biomedical Circuits and Systems,2017,12(1):171-181. [4]ŻUREK D,PIETROŃ M,WIATR K.Training with reducedprecision of a support vector machine model for text classification[C]//Advances in Information and Communication:Proceedings of the 2021 Future of Information and Communication Conference(FICC),Volume 2.Springer International Publishing,2021:785-798. [5]FENG L,LI Z,WANG Y,et al.A Fast On-Chip SVM-Training System With Dual-Mode Configurable Pipelines and MSMO Scheduler[J].IEEE Transactions on Circuits and Systems I:Regular Papers,2019,66(11):4230-4241. [6]NORONHA D H,TORQUATO M F,FERNANDES M A C.A parallel implementation of sequential minimal optimization on FPGA[J].Microprocessors and Microsystems,2019,69:138-151. [7]DASS J,NARAWANE Y,MAHAPATRA R N,et al.Distributed training of support vector machine on a multiple-FPGA system[J].IEEE Transactions on Computers,2020,69(7):1015-1026. [8]DENG S,ZHAO H,FANG W,et al.Edge intelligence:The confluence of edge computing and artificial intelligence[J].IEEE Internet of Things Journal,2020,7(8):7457-7469. [9]HO S M H,WANG M,NG H C,et al.Towards FPGA-assisted spark:An SVM training acceleration case study[C]//2016 International Conference on ReConFigurable Computing and FPGAs(ReConFig).IEEE,2016:1-6. [10]KUMAR B,VYAS O P,VYAS R.A comprehensive review on the variants of support vector machines[J].Modern Physics Letters B,2019,33(25):1950303. [11]DEMIDOVA L,KLYUEVA I,SOKOLOVA Y,et al.Intellectual approaches to improvement of the classification decisions quality on the base of the SVM classifier[J].Procedia Computer Science,2017,103:222-230. [12]NIE F,ZHU W,LI X.Decision Tree SVM:An extension of linearSVM for non-linear classification[J].Neurocomputing,2020,401:153-159. [13]UTKIN L V.An imprecise extension of SVM-based machine learning models[J].Neurocomputing,2019,331:18-32. [14]CHAUHAN V K,DAHIYA K,SHARMA A.Problem formulations and solvers in linear SVM:a review[J].Artificial Intelligence Review,2019,52(2):803-855. [15]HSU D,MUTHUKUMAR V,XU J.On the proliferation ofsupport vectors in high dimensions[C]//International Conference on Artificial Intelligence and Statistics.PMLR,2021:91-99. [16]SHALEV-SHWARTZ S,SINGER Y,SREBRO N.Pegasos:Primal estimated sub-gradient solver for svm[C]//Proceedings of the 24th International Conference on Machine Learning.2007:807-814. [17]HAJEWSKI J,OLIVEIRA S,STEWART D.Smoothed Hinge Loss and ℓ1 Support Vector Machines[C]//2018 IEEE International Conference on Data Mining Workshops(ICDMW).IEEE,2018:1217-1223. [18]ABEYKOON V L,FOX G C,KIM M.Performance optimization on model synchronization in parallel stochastic gradient descent based svm[C]//2019 19th IEEE/ACM International Symposium on Cluster,Cloud and Grid Computing(CCGRID).IEEE,2019:508-517. [19]ZOPPIS I,MAURI G,DONDI R.Kernel methods:support vector machines[M]//Encyclopedia of Bioinformatics and Computational Biology.Elsevier,2019:503-510. [20]RING M,ESKOFIER B M.An approximation of the Gaussian RBF kernel for efficient classification with SVMs[J].Pattern Recognition Letters,2016,84:107-113. [21]LIM E A,TAN W H,JUNOH A K.Distance weighted K-Means algorithm for center selection in training radial basis function networks[J].IAES International Journal of Artificial Intelligence,2019,8(1):54. [22]RABIEAH M B,BOUGANIS C S.FPGA based nonlinear support vector machine training using an ensemble learning[C]//2015 25th International Conference on Field Programmable Logic and Applications(FPL).IEEE,2015:1-4. [23]HAN L,YUE Z,GUO X.Image segmentation implementationbased on FPGA and SVM[C]//2017 3rd International Conference on Control,Automation and Robotics(ICCAR).IEEE,2017:405-409. [24]SHAO S,MENCER O,LUK W.Dataflow design for optimal incremental svm training[C]//2016 International Conference on Field-Programmable Technology(FPT).IEEE,2016:197-200. |
[1] | XU He, ZHOU Tao, LI Peng, QIN Fangfang, JI Yimu. LU Parallel Decomposition Optimization Algorithm Based on Kunpeng Processor [J]. Computer Science, 2024, 51(9): 51-58. |
[2] | ZHANG Daili, WANG Tinghua, ZHU Xinglin. Overview of Sample Reduction Algorithms for Support Vector Machine [J]. Computer Science, 2024, 51(7): 59-70. |
[3] | YAN Yunfei, LI Bin, WEI Yuanxin, ZHANG Bolin, MA Tianyi, ZHOU Qinglei. FPGA Efficient Scalability Optimization of Dilithium [J]. Computer Science, 2024, 51(6A): 230800138-9. |
[4] | DAI Wei, CHAI Jing, LIU Yajiao. Semi-supervised Learning Algorithm Based on Maximum Margin and Manifold Hypothesis [J]. Computer Science, 2024, 51(2): 259-267. |
[5] | LI Siyao, LI Shanglin, LUO Jingzhi. Parallel Computing of Reentry Vehicle Trajectory by Multiple Shooting Method Based onOPENMP [J]. Computer Science, 2024, 51(11A): 231000019-6. |
[6] | HE Weilong, SU Lingli, GUO Bingxuan, LI Maosen, HAO Yan. Research and Implementation of Dynamic Scene 3D Perception Technology Based on BinocularEstimation [J]. Computer Science, 2024, 51(11A): 240300045-8. |
[7] | WANG Xiaozhong, ZHANG Zuyu. Multi Level Parallel Computing for SW26010 Discontinuous Galerkin Finite Element Algorithm [J]. Computer Science, 2024, 51(11A): 240700055-5. |
[8] | PAN Lianrong, ZHANG Fuquan, HE Jinglong, YANG Jiayi. Equipment Anomaly Diagnosis Based on DGA and Sparse Support Vector Machine [J]. Computer Science, 2024, 51(11): 292-297. |
[9] | ZHANG Chang'en, CHENG Qing, SI Yuehang, HUANG Jincai. Large-scale Innovation Competition Evaluation Scheme Based on Multi-stage Evaluation [J]. Computer Science, 2024, 51(10): 86-93. |
[10] | ZHAI Xulun, ZHANG Yongguang, JIN Anzhao, QIANG Wei, LI Mengbing. Parallel DVB-RCS2 Turbo Decoding on Multi-core CPU [J]. Computer Science, 2023, 50(6): 22-28. |
[11] | CUI Jingsong, ZHANG Tongtong, GUO Chi, GUO Wenfei. Network Equipment Anomaly Detection Based on Time Delay Feature [J]. Computer Science, 2023, 50(3): 371-379. |
[12] | YU Yunjun, ZHANG Pengfei, GONG Hancheng, CHEN Min. Lightweight Network Hardware Acceleration Design for Edge Computing [J]. Computer Science, 2023, 50(11A): 220800045-7. |
[13] | WANG Yuzhan, GUO Bin, WANG Hongli, LIU Sicong. Adaptive Model Quantization Method for Intelligent Internet of Things Terminal [J]. Computer Science, 2023, 50(11): 306-316. |
[14] | FENG Chen, GU Jingjing. Efficient Distributed Training Framework for Federated Learning [J]. Computer Science, 2023, 50(11): 317-326. |
[15] | ZHANG Bolin, LI Bin, YAN Yunfei, WEI Yuanxin, ZHOU Qinglei. ZUC High Performance Data Encryption Scheme Based on FPGA [J]. Computer Science, 2023, 50(11): 374-382. |
|