Computer Science ›› 2025, Vol. 52 ›› Issue (6A): 240700047-8.doi: 10.11896/jsjkx.240700047
• Big Data & Data Science • Previous Articles Next Articles
HONG Yi1, SHEN Shikai2, SHE Yumei1, YANG Bin3, DAI Fei4, WANG Jianxiao1, ZHANG Liyi1
CLC Number:
[1]MATSUBARA Y,SAKURAI Y,VAN PANHUISW G,et al.FUNNEL:automatic mining of spatially coevolving epidemics[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2014:105-114. [2]PATTON A.Copula methods for forecasting multivariate time series[J].Handbook of Economic Forecasting,2013,2:899-960. [3]ANGRYK R A,MARTENS P C,AYDIN B,et al.Multivariate time series dataset for space weather data analytics[J].Scientific Data,2020,7(1):227. [4]TIAN R,LI X,MA Z,et al.LDformer:a parallel neural network model for long-term power forecasting[J].Frontiers of Information Technology & Electronic Engineering,2023,24(9):1287-1301. [5]WANG J H,LEUJ Y.Stock market trend prediction using ARIMA-based neural networks[C]//Proceedings of International Conference on Neural Networks(ICNN’96).IEEE,1996:2160-2165. [6]XU D,WANG Y,JIA L,et al.Real-time road traffic state prediction based on ARIMA and Kalman filter[J].Frontiers of Information Technology & Electronic Engineering,2017,18:287-302. [7]BENVENUTO D,GIOVANETTI M,VASSALLO L,et al.Application of the ARIMA model on the COVID-2019 epidemic dataset[J].Data in Brief,2020,29:105340. [8]CAO L J,TAY F E H.Support vector machine with adaptive parameters in financial time series forecasting[J].IEEE Transactions on neural networks,2003,14(6):1506-1518. [9]ROBERTS S,OSBORNE M,EBDEN M,et al.Gaussian processes for time-series modelling[J].Philosophical Transactions of the Royal Society A:Mathematical,Physical and Engineering Sciences,2013,371(1984):20110550. [10]MASINI R P,MEDEIROS M C,MENDESE F.Machine learning advances for time series forecasting[J].Journal of Economic Surveys,2023,37(1):76-111. [11]KUMARI S,SINGH S K.Machine learning-based time seriesmodels for effective CO2 emission prediction in India[J].Environmental Science and Pollution Research,2023,30(55):116601-116616. [12]CASTÁN-LASCORZ M A,JIMÉNEZ-HERRERA P,TRON-COSO A,et al.A new hybrid method for predicting univariate and multivariate time series based on pattern forecasting[J].Information Sciences,2022,586:611-627. [13]WANG R,PEI X,ZHU J,et al.Multivariable time series forecasting using model fusion[J].Information Sciences,2022,585:262-274. [14]OZYEGEN O,ILIC I,CEVIK M.Evaluation of interpretability methods for multivariate time series forecasting[J].Applied Intelligence,2022,52:4727-4743. [15]SHIH S Y,SUN F K,LEE H.Temporal pattern attention for multivariate time series forecasting[J].Machine Learning,2019,108:1421-1441. [16]LAI G,CHANG W C,YANG Y,et al.Modeling long-and short-term temporal patterns with deep neural networks[C]//The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval.2018:95-104. [17]BRUNA J,ZAREMBA W,SZLAM A,et al.Spectral networks and locally connected networks on graphs[J].arXiv:1312.6203,2013. [18]KIPF T N,WELLING M.Semi-supervised classification withgraph convolutional networks[J].arXiv:1609.02907,2016. [19]FENG F,HE X,WANG X,et al.Temporal relational ranking for stock prediction[J].ACM Transactions on Information Systems,2019,37(2):1-30. [20]FU Q,BA B,HUANG C J,et al.Dynamic spatiotemporal graph convolutional network for short-term traffic flow prediction[J].Journal of Hunan University of Science and Technology,2024,39(1):70-79. [21]WANG W T,WANG X Q,LI L X,et al.Review on the construction and application of spatio temporal graph neural networks in traffic flow prediction[J].Computer Engineering and Applications,2024,60(8):31-45. [22]LI J,MA H,ZHANG Z,et al.Spatio-temporal graph dual-attention network for multi-agent prediction and tracking[J].IEEE Transactions on Intelligent Transportation System,2022,23(8):10556-10569. [23]GAO Z,LI Z,ZHANG H,et al.Dynamic spatiotemporal interactive graph neural network for multivariate time series forecasting[J].Knowledge-Based Systems,2023,280:110995. [24]WU Z,PAN S,LONG G,et al.Connecting the dots:multivariate time series forecasting with graph neural networks[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2020:753-763. [25]WU N,GREEN B,BEN X,et al.Deep transformer models for time series forecasting:the influenza prevalence case[J].arXiv:2001.08317,2020. [26]YOO J,KANG U.Attention-based autoregression for accurate and efficient multivariate time series forecasting[C]//Procee-dings of the 2021 SIAM International Conference on Data Mi-ning(SDM).Society for Industrial and Applied Mathematics.2021:531-539. [27]LIU S,YU H,LIAO C,et al.Pyraformer:low-complexity pyramidal attention for long-range time series modeling and forecasting[C]//International Conference on Learning Representations.2021. [28]HAN L,HUO W G,ZHANG Y H,et al.Multivariatetime series prediction based on multi-scale feature fusion and dual attention mechanism[J].Computer Engineering,2023,49(9):99-108. [29]FUNABASHI S,ISOBE T,HONGYI F,et al.Multi-fingered in-hand manipulation with various object properties using graph convolutional networks and distributed tactile sensors[J].IEEE Robotics and Automation Letters,2022,7(2):2102-2109. [30]LAI G,CHANG W C,YANG Y,et al.Modeling long-andshort-term temporal patterns with deep neural networks[C]//International ACM SIGIR Conference on Research and Deve-lopment in Information Retrieval.ACM,2018. [31]ZHOU H,ZHANG S,PENG J,et al.Informer:beyond efficient transformer for long sequence time-series forecasting[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2021:11106-11115. [32]YE J,LIU Z,DU B,et al.Learning the evolutionary and multi-scale graph structure for multivariate time series forecasting[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining.2022:2296-2306. [33]LIU M,ZENG A,CHEN M,et al.SCINet:time series modeling and forecasting with sample convolution and interaction[J].Advances in Neural Information Processing Systems,2022,35:5816-5828. |
[1] | ZHAO Chanchan, YANG Xingchen, SHI Bao, LYU Fei, LIU Libin. Optimization Strategy of Task Offloading Based on Meta Reinforcement Learning [J]. Computer Science, 2025, 52(6A): 240800050-8. |
[2] | WANG Rong , ZOU Shuping, HAO Pengfei, GUO Jiawei, SHU Peng. Sand Dust Image Enhancement Method Based on Multi-cascaded Attention Interaction [J]. Computer Science, 2025, 52(6A): 240800048-7. |
[3] | WANG Baohui, GAO Zhan, XU Lin, TAN Yingjie. Research and Implementation of Mine Gas Concentration Prediction Algorithm Based on Deep Learning [J]. Computer Science, 2025, 52(6A): 240400188-7. |
[4] | ZHENG Chuangrui, DENG Xiuqin, CHEN Lei. Traffic Prediction Model Based on Decoupled Adaptive Dynamic Graph Convolution [J]. Computer Science, 2025, 52(6A): 240400149-8. |
[5] | TENG Minjun, SUN Tengzhong, LI Yanchen, CHEN Yuan, SONG Mofei. Internet Application User Profiling Analysis Based on Selection State Space Graph Neural Network [J]. Computer Science, 2025, 52(6A): 240900060-8. |
[6] | LI Daicheng, LI Han, LIU Zheyu, GONG Shiheng. MacBERT Based Chinese Named Entity Recognition Fusion with Dependent Syntactic Information and Multi-view Lexical Information [J]. Computer Science, 2025, 52(6A): 240600121-8. |
[7] | HUANG Bocheng, WANG Xiaolong, AN Guocheng, ZHANG Tao. Transmission Line Fault Identification Method Based on Transfer Learning and Improved YOLOv8s [J]. Computer Science, 2025, 52(6A): 240800044-8. |
[8] | WU Zhihua, CHENG Jianghua, LIU Tong, CAI Yahui, CHENG Bang, PAN Lehao. Human Target Detection Algorithm for Low-quality Laser Through-window Imaging [J]. Computer Science, 2025, 52(6A): 240600069-6. |
[9] | ZENG Fanyun, LIAN Hechun, FENG Shanshan, WANG Qingmei. Material SEM Image Retrieval Method Based on Multi-scale Features and Enhanced HybridAttention Mechanism [J]. Computer Science, 2025, 52(6A): 240800014-7. |
[10] | HOU Zhexiao, LI Bicheng, CAI Bingyan, XU Yifei. High Quality Image Generation Method Based on Improved Diffusion Model [J]. Computer Science, 2025, 52(6A): 240500094-9. |
[11] | DING Xuxing, ZHOU Xueding, QIAN Qiang, REN Yueyue, FENG Youhong. High-precision and Real-time Detection Algorithm for Photovoltaic Glass Edge Defects Based onFeature Reuse and Cheap Operation [J]. Computer Science, 2025, 52(6A): 240400146-10. |
[12] | GUAN Xin, YANG Xueyong, YANG Xiaolin, MENG Xiangfu. Tumor Mutation Prediction Model of Lung Adenocarcinoma Based on Pathological [J]. Computer Science, 2025, 52(6A): 240700010-8. |
[13] | TAN Jiahui, WEN Chenyan, HUANG Wei, HU Kai. CT Image Segmentation of Intracranial Hemorrhage Based on ESC-TransUNet Network [J]. Computer Science, 2025, 52(6A): 240700030-9. |
[14] | CHEN Xianglong, LI Haijun. LST-ARBunet:An Improved Deep Learning Algorithm for Nodule Segmentation in Lung CT Images [J]. Computer Science, 2025, 52(6A): 240600020-10. |
[15] | SHEN Xinyang, WANG Shanmin, SUN Yubao. Depression Recognition Based on Speech Corpus Alignment and Adaptive Fusion [J]. Computer Science, 2025, 52(6): 219-227. |
|