Computer Science ›› 2025, Vol. 52 ›› Issue (6A): 240400149-8.doi: 10.11896/jsjkx.240400149
• Big Data & Data Science • Previous Articles Next Articles
ZHENG Chuangrui, DENG Xiuqin, CHEN Lei
CLC Number:
[1]KUMAR S V,VANAJAKSHI L.Short-term traffic flow prediction using seasonal ARIMA model with limited input data[J].European Transport Research Review,2015,7:1-9. [2]SCHIMBINSCHI F,MOREIRA-MATIAS L,NGUYEN V X,et al.Topology-regularized universal vector autoregression for traffic forecasting in large urban areas[J].Expert Systems with Applications,2017,82:301-316. [3]YU H,JI N,REN Y,et al.A special event-based K-nearest neighbor model for short-term traffic state prediction[J].IEEE Access,2019,7:81717-81729. [4]FENG X,LING X,ZHENG H,et al.Adaptive multi-kernelSVM with spatial-temporal correlation for short-term traffic flow prediction[J].IEEE Transactions on Intelligent Transportation Systems,2018,20(6):2001-2013. [5]SHAO W,JIN Z,WANG S,et al.Long-term Spatio-Temporal Forecasting via Dynamic Multiple-Graph Attention[C]//31st International Joint Conference on Artificial Intelligence(IJCAI 2022).International Joint Conferences on Artificial Intelligence,2022:2225-2232. [6]FENG A,TASSIULA L.Adaptive Graph Spatial-TemporalTransformer Network for Traffic Forecasting[C]//Proceedings of the 31st ACM International Conference on Information & Knowledge Management.2022:3933-3937. [7]LUO X,ZHU C,ZHANG D,et al.Dynamic Graph Convolutional Network with Attention Fusion for Traffic Flow Prediction[M]//ECAI 2023.IOS Press,2023:1633-1640. [8]LI Y,YU R,SHAHABI C,et al.Diffusion Convolutional Recurrent Neural Network:Data-Driven Traffic Forecasting[J].arXiv:1707.01926. [9]HAN H,ZHANG M,HOU M,et al.STGCN:a spatial-temporal aware graph learning method for POI recommendation[C]//International Conference on Data Mining(ICDM).IEEE,2020:1052-1057. [10]GUO S,LIN Y,FENG N,et al.Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2019,33(1):922-929. [11]XIAO Y,QIN J Y,LI K L,et al.Multimodal Traffic flow colla-borative predictionMethod based on graph contrast learning [J].Computer Science,2023,50(10):135-145. [12]HE Z,ZHAO C,HUANG Y.Multivariate time series deep spatiotemporal forecasting with graph neural network[J].Applied Sciences,2022,12(11):5731. [13]UBAL C,DI-GIORG G,CONTRERAS-REYES J E,et al.Predicting the Long-Term Dependencies in Time Series Using Recurrent Artificial Neural Networks[J].Machine Learning and Knowledge Extraction,2023,5(4):1340-1358. [14]MUMUNI A,MUMUNI F.Data augmentation:A comprehen-sive survey of modern approaches[J].Array,2022,16:100258. [15]LI Z,HU Z,LUO W,et al.SaberNet:Self-attention based effective relation network for few-shot learning[J].Pattern Recognition,2023,133:109024. [16]QIN C,HUANG G,YU H,et al.Geological information prediction for shield machine usingan enhanced multi-head self-attention convolution neural network with two-stage feature extraction[J].Geoscience Frontiers,2023,14(2):101519. [17]ZHANG S,TONG H,XU J,et al.Graph convolutional net-works:a comprehensive review[J].Computational Social Networks,2019,6(1):1-23. [18]SUTSKEVER I,VINYALS O,LE Q V.Sequence to sequence learning with neural networks[J].arXiv:1409.3215. [19]WU Z,PAN S,LONG G,et al.Graph wavenet for deep spatial-temporal graph modeling[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence.2019:1907-1913. [20]YU B,YIN H,ZHU Z.Spatio-temporal graph convolutional networks:A deep learning framework for traffic forecasting[J].arXiv:1709.04875,2017. [21]WU Z,PAN S,LONG G,et al.Connecting the dots:Multivariate time series forecasting with graph neural networks[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2020:753-763. [22]TA X,LIU Z,HU X,et al.Adaptive spatio-temporal graph neural network for traffic forecasting[J].Knowledge-based Systems,2022,242:108199. [23]SUN Y,JIANG X,HU Y,et al.Dual dynamic spatial-temporal graph convolution network for traffic prediction[J].IEEE Transactions on Intelligent Transportation Systems,2022,23(12):23680-23693. [24]LI F,FENG J,YAN H,et al.Dynamic graph convolutional recurrent network for traffic prediction:Benchmark and solution[J].ACM Transactions on Knowledge Discovery from Data,2023,17(1):1-21. [25]WU B,CHEN L.DSTCGCN:Learning Dynamic Spatial-Temporal Cross Dependencies for Traffic Forecasting[J].arXiv:2307.00518,2023. |
[1] | TENG Minjun, SUN Tengzhong, LI Yanchen, CHEN Yuan, SONG Mofei. Internet Application User Profiling Analysis Based on Selection State Space Graph Neural Network [J]. Computer Science, 2025, 52(6A): 240900060-8. |
[2] | ZHOU Lei, SHI Huaifeng, YANG Kai, WANG Rui, LIU Chaofan. Intelligent Prediction of Network Traffic Based on Large Language Model [J]. Computer Science, 2025, 52(6A): 241100058-7. |
[3] | SHI Enyi, CHANG Shuyu, CHEN Kejia, ZHANG Yang, HUANG Haiping. BiGCN-TL:Bipartite Graph Convolutional Neural Network Transformer Localization Model for Software Bug Partial Localization Scenarios [J]. Computer Science, 2025, 52(6A): 250200086-11. |
[4] | QIAO Yu, XU Tao, ZHANG Ya, WEN Fengpeng, LI Qiangwei. Graph Neural Network Defect Prediction Method Combined with Developer Dependencies [J]. Computer Science, 2025, 52(6): 52-57. |
[5] | WANG Jinghong, WU Zhibing, WANG Xizhao, LI Haokang. Semantic-aware Heterogeneous Graph Attention Network Based on Multi-view RepresentationLearning [J]. Computer Science, 2025, 52(6): 167-178. |
[6] | SHEN Xinyang, WANG Shanmin, SUN Yubao. Depression Recognition Based on Speech Corpus Alignment and Adaptive Fusion [J]. Computer Science, 2025, 52(6): 219-227. |
[7] | WU Pengyuan, FANG Wei. Study on Graph Collaborative Filtering Model Based on FeatureNet Contrastive Learning [J]. Computer Science, 2025, 52(5): 139-148. |
[8] | HUANG Qian, SU Xinkai, LI Chang, WU Yirui. Hypergraph Convolutional Network with Multi-perspective Topology Refinement forSkeleton-based Action Recognition [J]. Computer Science, 2025, 52(5): 220-226. |
[9] | LI Shao, JIANG Fangting, YANG Xinyan, LIANG Gang. Rumor Detection on Potential Hot Topics with Bi-directional Graph Attention Network [J]. Computer Science, 2025, 52(3): 277-286. |
[10] | ZHENG Longhai, XIAO Bohuai, YAO Zewei, CHEN Xing, MO Yuchang. Graph Reinforcement Learning Based Multi-edge Cooperative Load Balancing Method [J]. Computer Science, 2025, 52(3): 338-348. |
[11] | HU Haifeng, ZHU Yiwen, ZHAO Haitao. Network Slicing End-to-end Latency Prediction Based on Heterogeneous Graph Neural Network [J]. Computer Science, 2025, 52(3): 349-358. |
[12] | YANG Yingxiu, CHEN Hongmei, ZHOU Lihua , XIAO Qing. Heterogeneous Graph Attention Network Based on Data Augmentation [J]. Computer Science, 2025, 52(3): 180-187. |
[13] | YUAN Ye, CHEN Ming, WU Anbiao, WANG Yishu. Graph Anomaly Detection Model Based on Personalized PageRank and Contrastive Learning [J]. Computer Science, 2025, 52(2): 80-90. |
[14] | ZHENG Wenping, HAN Yiheng, LIU Meilin. Node Classification Algorithm Fusing High-order Group Structure Information [J]. Computer Science, 2025, 52(2): 107-115. |
[15] | WANG Xin, XIONG Shubo, SUN Lingyun. Federated Graph Learning:Problems,Methods and Challenges [J]. Computer Science, 2025, 52(1): 362-373. |
|