Computer Science ›› 2025, Vol. 52 ›› Issue (6): 256-263.doi: 10.11896/jsjkx.240600123
• Computer Graphics & Multimedia • Previous Articles Next Articles
CHEN Yadang1, GAO Yuxuan1, LU Chuhan1, CHE Xun2
CLC Number:
[1]CHEN Y,LIU Z,XU H,et al.Meta-Baseline:E-xploring simple meta-learning for few-shot le-arning[C]//2021 IEEE/CVF International Conference on Computer Vision(ICCV).2021:9042-9051. [2]PADMANABHAN D,GOWDA S,ARANI E,et al.Ls-fsl:Le-veraging shape information in few-shot learning[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops(CVPRW).2023:4971-4980. [3]QIAO Q,XIE Y,ZENG Z Y,et al.Talds-net:Task aware adaptive local descriptors selection for few-shot image classification[J].arXiv:2312.05449,2023. [4]SNELL J,SWERSKY K,ZEMEL R.Prototypical networks for few-shot learning[J].arXiv:1703.05275.2017. [5]ZHANG C,CAI Y,LIN G,et al.DeepEMD:Differentiable earth mover's distance for few-shot learning[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,45(5):5632-5648. [6]CHEN H,LI H,LI Y,et al.Multi-level metric learning for few-shot image recognition[C]//International Conference on Artificial Neural Networks.Cham:Springer International Publishing,2022:243-254. [7]DENG G L,HUANG G H,CHEN Z Y.Category DecoupledFew-Shot Classifi-cation for Graph Neural Network[J].Computer Engineering and Applications,2024,60(2):129-136. [8]LIU C,FU Y,XU C,et al.Learning a few-shot embedding modelwith contrastive learning[C]//Procee-dings of the AAAI Conference On Arti-Ficial Intelligence.2021:8635-8643. [9]MANGLA P,KUMARI N,SINHA A,et al.Charting the right manifold:Manifold mixup for few-shot learning[C]//Procee-dings of the IEEE/CVF Winter Conference on Applications of Co-Mputer Vision.2020:2218-2227. [10]ZHUO L,FU Y,CHEN J, et al. Tgdm: Target guided dynamic mixup for cross-domain few-shot learning[C]//Proceedings of the 30th ACM International Conference on Multimedia.2022:6368-6376. [11]ZHANG H Y,CISSE M,DAUPHIN Y N,et al.mixup:Beyond empirical risk minimization[J].arXiv:1710.09412,2017. [12]YUN S,HAN D,OH S J,et al.Cutmix:Regular-ization strategy to train strong classifiers with localizable features[C]//Procee-dings of the IEEE/CVF International Conference on Computer Vision.2019:6023-6032. [13]KIM J H,CHOO W,SONG H O.Puzzle mix:Exploiting saliency and local statistics for optimal mixup[C]//International Conference on Machine Learning.PMLR,2020:5275-5285. [14]PENG T,FENG L,DU Y D,et al.Meta-cosine loss for few-shot image classification[J].Journal of Image and Graphics,2024,29(2):506-519. [15]GUO L,LIU B,LI W G,ea al.A Few-Shot Image Classification Method by Hard Pairwise-Based Excitation[J].Journal of Computer-Aided Design & Computer Graphics,2024,26(6):895-903. [16]KANG D,KWON H,MIN J,et al.Relational em-bedding for few-shot classification[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:8822-8833. [17]AFRASIYABI A,LALONDE J F,GAGNÉ C.Mixture-based feature space learning for few-shot image classification[C]//Proceedings of the IEEE/CVF International Conference on Computer ViSion.2021:9041-9051. [18]YANG Z Y,WANG J H,ZHU Y Y.Few-shot classificationwith contrastive learning[C]//European Conference on Computer Vision.Cham:Springer Nature Switzerland,2022:293-309. [19]YANG L,LI L,ZHANG Z,et al.Dpgn:Distribution propagation graph network for few-shot learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and PatternRe-cognition.2020:13390-13399. [20]YANG S,LIU L,XU M.Free lunch for few-shot learning:Distribution calibration[J].arXiv:2101.06395,2021. [21]AFRASIYABI A,LALONDE J F,GAGNÉ C.Associative alignment for few-shot image classification[C]//Computer Vision-ECCV 2020:16th European Conference,Glasgow,UK,August 23-28,2020,Proceedings,Part V 16.Springer International Publishing,2020:18-35. [22]ZIKO I,DOLZ J,GRANGER E,et al.Laplacian regularized few-shot learning[C]//International Conference on Machine Learning.PMLR,2020:11660-11670. [23]AFRASIYABI A,LAROCHELLE H,LALONDE J F,et al.Matching feature sets for few-shot image classification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:9014-9024. [24]HE K M,FAN H Q,WU Y X,et al.Momentum contrast for unsupervised visual representation learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:9729-9738. [25]HENDRYCKS D,MU N,CUBUK E D,et al.Augmix:A simple data processing method to improve robustness and uncertainty[J].arXiv:1912.02781,2019. [26]CHEN Z,FU Y,WANG Y X,et al.Image deformation meta-networks for one-shot learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:8680-8689. [27]VERMA V,LAMB A,BECKHAM C,et al.Manifold mixup:Better representations by interpolating hidden states[C]//International Conference on Machine Learning.PMLR,2019:6438-6447. [28]YANG T H,GU Z H,MA L Z.Style-aware Cross Domain Few-Shot Anomaly Detection[J/OL].http://kns.cnki.net/kcms/detail/11.2925.TP.20240926.1526.003.html. [29]CHEN Y D,ZHAO Y B,WU E H,et al.Robust Semi-supervised Video Object Segmentation with Dynamic Embedding[J].https://link.cnki.net/doi/10.13700/j.bh.1001-5965.2023.0354 [30]LIU H,TIAN Z,QIU J,et al.Survey on Few-shot for Malware Detection [J].Journal of Software,2024,35(8):3785-3808. [31]LI F,JIA D L,YAO Y M,et al.Graph Neural Network Few Shot Image Classification Network Based on Residual and Self-attention Mechanism [J].Computer Science,2023,50(S1):276-380. [32]CHEN Y D,HAO C Y,YANG Z X,et al.Fast Target-aware Learning for Few-shot Video Object Segmentation[J].SCIENCE CHINA Information Sciences,2022,65(8):182104. [33]CHEN Y D,JIANG R,ZHENG Y H,et al.Dual branch multi-level semantic learning for few-shot segmentation[J].IEEE Transactions on Image Processing,2024,33:1432-1447. [34]CHEN Y,CHEN S,YANG Z X,et al.Learning self-targetknowledge for few-shot segmentation[J].Pattern Recognition,2024,149:110266. [35]CHEN Y D,CHEN L R,YU W B,et al.Knowledge Distillation Anomaly Detection with Multi-Scale Feature Fusion[J].Journal of Computer-Aided Design & Computer Graphics,2022,34(10):1542-1549. |
[1] | WANG Chundong, ZHANG Qinghua, FU Haoran. Federated Learning Privacy Protection Method Combining Dataset Distillation [J]. Computer Science, 2025, 52(6A): 240500132-7. |
[2] | GAO Xinjun, ZHANG Meixin, ZHU Li. Study on Short-time Passenger Flow Data Generation and Prediction Method for RailTransportation [J]. Computer Science, 2025, 52(6A): 240600017-5. |
[3] | LI Jianghui, DING Haiyan, LI Weihua. Prediction of Influenza A Antigenicity Based on Few-shot Contrastive Learning [J]. Computer Science, 2025, 52(6A): 240800053-6. |
[4] | YE Jiale, PU Yuanyuan, ZHAO Zhengpeng, FENG Jue, ZHOU Lianmin, GU Jinjing. Multi-view CLIP and Hybrid Contrastive Learning for Multimodal Image-Text Sentiment Analysis [J]. Computer Science, 2025, 52(6A): 240700060-7. |
[5] | FU Shufan, WANG Zhongqing, JIANG Xiaotong. Zero-shot Stance Detection in Chinese by Fusion of Emotion Lexicon and Graph ContrastiveLearning [J]. Computer Science, 2025, 52(6A): 240500051-7. |
[6] | LEI Shuai, QIU Mingxin, LIU Xianhui, ZHANG Yingyao. Image Classification Model for Waste Household Appliance Recycling Based on Multi-scaleDepthwise Separable ResNet [J]. Computer Science, 2025, 52(6A): 240500057-7. |
[7] | LIU Yufei, XIAO Yanhui, TIAN Huawei. PRNU Fingerprint Purification Algorithm for Open Environment [J]. Computer Science, 2025, 52(6): 187-199. |
[8] | WU Pengyuan, FANG Wei. Study on Graph Collaborative Filtering Model Based on FeatureNet Contrastive Learning [J]. Computer Science, 2025, 52(5): 139-148. |
[9] | FU Kun, CUI Jingyuan, DANG Xing, CHENG Xiao, YING Shicong, LI Jianwei. Study on Graph Data Augmentation Based on Graph Entropy Theory [J]. Computer Science, 2025, 52(5): 149-160. |
[10] | MIAO Zhuang, CUI Haoran, ZHANG Qiyang, WANG Jiabao, LI Yang. Restoration of Atmospheric Turbulence-degraded Images Based on Contrastive Learning [J]. Computer Science, 2025, 52(5): 171-178. |
[11] | SUN Jinyong, WANG Xuechun, CAI Guoyong, SHANG Zhiliang. Open Set Recognition Based on Meta Class Incremental Learning [J]. Computer Science, 2025, 52(5): 187-198. |
[12] | WANG Yifei, ZHANG Shengjie, XUE Dizhan, QIAN Shengsheng. Self-supervised Backdoor Attack Defence Method Based on Poisoned Classifier [J]. Computer Science, 2025, 52(4): 336-342. |
[13] | AN Rui, LU Jin, YANG Jingjing. Deep Clustering Method Based on Dual-branch Wavelet Convolutional Autoencoder and DataAugmentation [J]. Computer Science, 2025, 52(4): 129-137. |
[14] | SUN Tanghui, ZHAO Gang, GUO Meiqian. Long-tail Distributed Medical Image Classification Based on Large Selective Nuclear Bilateral-branch Networks [J]. Computer Science, 2025, 52(4): 231-239. |
[15] | YANG Yingxiu, CHEN Hongmei, ZHOU Lihua , XIAO Qing. Heterogeneous Graph Attention Network Based on Data Augmentation [J]. Computer Science, 2025, 52(3): 180-187. |
|