Computer Science ›› 2025, Vol. 52 ›› Issue (6A): 240700060-7.doi: 10.11896/jsjkx.240700060
• Artificial Intelligence • Previous Articles Next Articles
YE Jiale1, PU Yuanyuan1,2, ZHAO Zhengpeng1, FENG Jue1, ZHOU Lianmin1, GU Jinjing1
CLC Number:
[1]ZHANG L,WANG S,LIU B.Deep learning for sentiment analysis:A survey[J].Wiley Interdisciplinary Reviews:Data Mining and Knowledge Discovery,2018,8(4):e1253. [2]FANG Q,XU C,SANG J,et al.Word-of-mouth understanding:Entity-centric Multiplemodal aspect-opinion mining in social media[J].IEEE Transactions on Multiplemedia,2015,17(12):2281-2296. [3]GAO Y,ZHEN Y,LI H,et al.Filtering of brand-related microblogs using social-smooth Multipleview embedding[J].IEEE Transactions on Multiplemedia,2016,18(10):2115-2126. [4]YOU Q,CAO L,CONG Y,et al.A Multiplefaceted approach to social Multiplemedia-based prediction of elections[J].IEEE Transactions on Multiplemedia,2015,17(12):2271-2280. [5]XU N,MAO W,CHEN G.A co-memory network for Multi-plemodal sentiment analysis[C]//The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval.2018:929-932. [6]KUMAR A,VEPA J.Gated mechanism for attention basedMultiple modal sentiment analysis[C]//ICASSP 2020-2020 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP).IEEE,2020:4477-4481. [7]XIAO X,PU Y,ZHAO Z,et al.BIT:Improving image-text sentiment analysis via learning bidirectional image-text interaction[C]//2023 International Joint Conference on Neural Networks(IJCNN).IEEE,2023:1-9. [8]RADFORD A,KIM J W,HALLACYC,et al.Learning transferable visual models from natural language supervision[C]//International Conference on Machine Learning.PMLR,2021:8748-8763. [9]HU A,FLAXMAN S.Multimodal sentiment analysis to explore the structure of emotions[C]//proceedings of the 24th ACM SIGKDD international conference on Knowledge Discovery & Data Mining.2018:350-358. [10]PORIA S,CAMBRIA E,HAZARIKA D,et al.Multi-level multiple attentions for contextual multimodal sentiment analysis[C]//2017 IEEE International Conference on Data Mining(ICDM).IEEE,2017:1033-1038. [11]HUANG F,ZHANG X,ZHAO Z,et al.Image-text sentimentanalysis via deep multimodal attentive fusion[J].Knowledge-Based Systems,2019,167:26-37. [12]HUANG P Y,PATRICK M,HU J,et al.MultiplelingualMultiplemodal pre-training for zero-shot cross-lingual transfer of vision-language models[J].arXiv:2103.08849,2021. [13]LIN R,HU H.Multiplemodal contrastive learning via uni-Modal coding and cross-Modal prediction for Multiplemodal sentiment analysis[J].arXiv:2210.14556,2022. [14]NIU T,ZHU S,PANG L,et al.Sentiment analysis on Multiple-view social data[C]//MultipleMedia Modeling:22nd International Conference,MMM 2016,Miami,FL,USA,January 4-6,2016,Proceedings,Part II 22.Springer International Publishing,2016:15-27. [15]CAI Y,CAI H,WAN X.Multiple-modal sarcasm detection intwitter with hierarchical fusion model[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.2019:2506-2515. [16]HU A,FLAXMANS.Multiplemodal sentiment analysis to explore the structure of emotions[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2018:350-358. [17]HUANG F,ZHANG X,ZHAO Z,et al.Image-text sentimentanalysis via deep Multiplemodal attentive fusion[J].Knowledge-Based Systems,2019,167:26-37. [18]XU N.Analyzing Multiplemodal public sentiment based on hierarchical semantic attentional network[C]//2017 IEEE International Conference on Intelligence and Security Informatics(ISI).IEEE,2017:152-154. [19]XU N,MAO W.MultiSentiNet:A deep semantic network forMultiplemodal sentiment analysis[C]//Proceedings of the 2017 ACM on Conference on Information and Knowledge Management.2017:2399-2402. [20]YANG X,FENG S,ZHANG Y,et al.Multimodal sentiment detection based on multi-channel graph neural networks[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing(Volume 1:Long Papers).2021:328-339. [21]ZHU T,LI L,YANG J,et al.Multiplemodal sentiment analysis with image-text interaction network[J].IEEE Transactions on Multiplemedia,2022,25:3375-3385. [22]WANG Z,WAN Z,WAN X.Transmodality:An end2end fusion method with Transformer for Multiplemodal sentiment analysis[C]//Proceedings of the Web Conference 2020.2020:2514-2520. [23]CHEN Z,PU Y Y,ZHAO Z P,et al.Multi-modal sentiment Analysis Based on adaptive Gated Information Fusion [J].Computer Science,2023,50(3):298-306. [24]HE K,FAN H,WU Y,et al.Momentum contrast for unsupervised visual representation learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:9729-9738. [25]KHOSLA P,TETERWAK P,WANG C,et al.Supervised contrastive learning[J].Advances in neural information processing systems,2020,33:18661-18673. [26]GAO T,YAO X,CHEN D.Simcse:Simple contrastive learning of sentence embeddings[J].arXiv:2104.08821,2021. [27]YUAN X,LIN Z,KUEN J,et al.Multiplemodal contrastivetraining for visual representation learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:6995-7004. [28]LI Z,XU B,ZHU C,et al.CLMLF:A contrastive learning and Multiple-layer fusion method for Multiplemodal sentiment detection[J].arXiv:2204.05515,2022. [29]ZHU P,ZHANG W,WANG Y,et al.Multiple-granularityInter-class Correlation Based Contrastive Learning for Open Set Recognition[J].International Journal of Software & Informatics,2022,12(2):157-175. [30]YU A W,DOHAN D,LUONG M T,et al.Qanet:Combining local convolution with global self-attention for reading comprehension[J].arXiv:1804.09541,2018. [31]CUBUK E D,ZOPH B,SHLENS J,et al.Randaugment:Practical automated data augmentation with a reduced search space[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.2020:702-703. [32]LONG X,GAN C,MELOG,et al.Multimodal keyless attention fusion for video classification[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2018. [33]HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [34]DOSOVITSKIY A,BEYER L,KOLESNIKOV A,et al.An image is worth 16x16 words:Transformers for image recognition at scale[J].arXiv:2010.11929,2020. [35]CHEN Y.Convolutional neural network for sentence classification[D].University of Waterloo,2015. [36]ZHOU P,SHI W,TIAN J,et al.Attention-based bidirectional long short-term memory networks for relation classification[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics(volume 2:Short papers).2016:207-212. [37]DEVLIN J,CHANG M W,LEE K,et al.Bert:Pre-training of deep bidirectional Transformers for language understanding[J].arXiv:1810.04805,2018. [38]ZHANG M,CHANG K,WU Y.Multiple-modal Semantic Understanding with Contrastive Cross-modal Feature Alignment[J].arXiv:2403.06355,2024. [39]XU N,ZENG Z,MAO W.Reasoning with Multiplemodal sarcastic tweets via modeling cross-modality contrast and semantic association[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.2020:3777-3786. [40]QIN L,HUANG S,CHEN Q,et al.MMSD2.0:Towards a Reliable Multiple-modal Sarcasm Detection System[J].arXiv:2307.07135,2023. |
[1] | FAN Xing, ZHOU Xiaohang, ZHANG Ning. Review on Methods and Applications of Short Text Similarity Measurement in Social Media Platforms [J]. Computer Science, 2025, 52(6A): 240400206-8. |
[2] | LI Weirong, YIN Jibin. FB-TimesNet:An Improved Multimodal Emotion Recognition Method Based on TimesNet [J]. Computer Science, 2025, 52(6A): 240900046-8. |
[3] | FU Shufan, WANG Zhongqing, JIANG Xiaotong. Zero-shot Stance Detection in Chinese by Fusion of Emotion Lexicon and Graph ContrastiveLearning [J]. Computer Science, 2025, 52(6A): 240500051-7. |
[4] | HUANG Zhiyong, LI Bicheng, WEI Wei. Aspect-level Sentiment Analysis Models Based on Syntax and Semantics [J]. Computer Science, 2025, 52(6A): 240400193-7. |
[5] | SHI Kun, LI Decang, MENG Yanbing, LIU Yatong. Study on Regional Cold Chain Multimodal Transport Routes Considering Multiple Tasks [J]. Computer Science, 2025, 52(6A): 240600160-6. |
[6] | LI Jianghui, DING Haiyan, LI Weihua. Prediction of Influenza A Antigenicity Based on Few-shot Contrastive Learning [J]. Computer Science, 2025, 52(6A): 240800053-6. |
[7] | CHEN Yadang, GAO Yuxuan, LU Chuhan, CHE Xun. Saliency Mask Mixup for Few-shot Image Classification [J]. Computer Science, 2025, 52(6): 256-263. |
[8] | LIU Yufei, XIAO Yanhui, TIAN Huawei. PRNU Fingerprint Purification Algorithm for Open Environment [J]. Computer Science, 2025, 52(6): 187-199. |
[9] | WU Pengyuan, FANG Wei. Study on Graph Collaborative Filtering Model Based on FeatureNet Contrastive Learning [J]. Computer Science, 2025, 52(5): 139-148. |
[10] | MIAO Zhuang, CUI Haoran, ZHANG Qiyang, WANG Jiabao, LI Yang. Restoration of Atmospheric Turbulence-degraded Images Based on Contrastive Learning [J]. Computer Science, 2025, 52(5): 171-178. |
[11] | LI Zongmin, RONG Guangcai, BAI Yun, XU Chang , XIAN Shiyang. 3D Object Detection with Dynamic Weight Graph Convolution [J]. Computer Science, 2025, 52(3): 104-111. |
[12] | TIAN Qing, KANG Lulu, ZHOU Liangyu. Class-incremental Source-free Domain Adaptation Based on Multi-prototype Replay andAlignment [J]. Computer Science, 2025, 52(3): 206-213. |
[13] | YUAN Ye, CHEN Ming, WU Anbiao, WANG Yishu. Graph Anomaly Detection Model Based on Personalized PageRank and Contrastive Learning [J]. Computer Science, 2025, 52(2): 80-90. |
[14] | LIU Yanlun, XIAO Zheng, NIE Zhenyu, LE Yuquan, LI Kenli. Case Element Association with Evidence Extraction for Adjudication Assistance [J]. Computer Science, 2025, 52(2): 222-230. |
[15] | YE Lishuo, HE Zhixue. Multi-granularity Time Series Contrastive Learning Method Incorporating Time-Frequency Features [J]. Computer Science, 2025, 52(1): 170-182. |
|