Computer Science ›› 2025, Vol. 52 ›› Issue (5): 91-100.doi: 10.11896/jsjkx.240800055
• High Performance Computing • Previous Articles Next Articles
WEI Xiaohui1, GUAN Zeyu1, WANG Chenyang1, YUE Hengshan1, WU Qi1,2
CLC Number:
[1]KRIZHEVSKY A,SUTSKEVER I,HINTON G E.ImageNet classification with deep convolutional neural networks[J].Communications of the ACM,2017,60(6):84-90. [2]AMODEI D,ANANTHANARAYANAN S,ANUBHAI R,et al.Deep speech 2:End-to-end speech recognition in english and mandarin[C]//International Conference on Machine Learning.PMLR,2016:173-182. [3]ZHANG Y,WALLACE B.A sensitivity analysis of(and practitioners' guide to) convolutional neural networks for sentence classification[J].arXiv:1510.03820,2015. [4]CHEN Y H,KRISHNA T,EMER J S,et al.Eyeriss:An energyefficient reconfigurable accelerator for deep convolutional neural networks[J].IEEE Journal of Solid-state Sircuits,2016,52(1):127-138. [5]ALWANI M,CHEN H,FERDMAN M,et al.Fused-layer CNN accelerators[C]//2016 49th Annual IEEE/ACM International Symposium on Microarchitecture(MICRO).IEEE,2016:1-12. [6]CHEN T,DU Z,SUN N,et al.Diannao:A small-footprint high-throughput accelerator for ubiquitous machine-learning[J].ACM SIGARCH Computer Architecture News,2014,42(1):269-284. [7]JOUPPI N P,YOUNG C,PATIL N,et al.In-datacenter performance analysis of a tensor processing unit[C]//Proceedings of the 44th Annual International Symposium on Computer Architecture.2017:1-12. [8]CHUNG E,FOWERS J,OVTCHAROV K,et al.Serving DNNsin real time at datacenter scale with project brainwave[J].IEEE Micro,2018,38(2):8-20. [9]ZHOU X,LI Y,LIANG W.CNN-RNN based intelligent recommendation for online medical pre-diagnosis support[J].IEEE/ACM Transactions on Computational Biology and Bioinforma-tics,2020,18(3):912-921. [10]CHISHTI S O A,RIAZ S,BILALZAIB M,et al.Self-drivingcars using CNN and Q-learning [C]//2018 IEEE 21st International Multi-Topic Conference(INMIC).IEEE,2018:1-7. [11]ZHANG J J,GU T,BASU K,et al.Analyzing and mitigating the impact of permanent faults on a systolic array based neural network accelerator [C]//2018 IEEE 36th VLSI Test Symposium(VTS).IEEE,2018:1-6. [12]TAKANAMI I,FUKUSHI M.A built-in circuit for self-repairing mesh-connected processor arrays with spares on diagonal[C]//2017 IEEE 22nd Pacific Rim International Symposium on Dependable Computing(PRDC).IEEE,2017:110-117. [13]ZHAO Y,WANG K,LOURI A.FSA:An efficient fault-tolerant systolic array-based DNN accelerator architecture[C]//2022 IEEE 40th International Conference on Computer Design(ICCD).IEEE,2022:545-552. [14]STOJANOVIĆ N M,MILOVANOVIĆ E I,STOJMENOVIĆ I,et al.Mapping matrix multiplication algorithm onto fault-tole-rant systolic array[J].Computers & Mathematics with Applications,2004,48(1/2):275-289. [15]SIDDIQUE A,HOQUE K A.Exposing Reliability Degradation and Mitigation in Approximate DNNs Under Permanent Faults[J].IEEE Transactions on Very Large Scale Integration(VLSI) Systems,2023,31(4):555-566. [16]RUOSPO A,GAVARINI G,DE SIO C,et al.Assessing convolutional neural networks reliability through statistical fault injections[C]//2023 Design,Automation & Test in Europe Conference & Exhibition(DATE).IEEE,2023:1-6. [17]ZHOU F Y,JIN L P,DONG J.A Survey of Convolutional Neural Network Research [J].Chinese Journal of Computers,2017,40(6):1229-1251. [18]JU X,CAO Y S,WEN M,et al.An Optimization Strategy of Systolic Array with Early Switching Between Matrix Blocks [J].Computer Engineering and Science,2023,45(1):1-9. [19]PAPPALARDO S,RUOSPO A,O'CONNOR I,et al.A Fault Injection Framework for AI Hardware Accelerators[C]//2023 IEEE 24th Latin American Test Symposium(LATS).IEEE,2023:1-6. [20]NARDI A,ARMATO A.Functional safety methodologies forautomotive applications [C]//2017 IEEE/ACM International Conference on Computer-Aided Design(ICCAD).IEEE,2017:970-975. [21]SCHREIBER T.Extremely simple nonlinear noise-reductionmethod[J].Physical Review E,1993,47(4):2401. [22]SAMAJDAR A,JOSEPH J M,ZHU Y,et al.A systematicmethodology for characterizing scalability of dnn accelerators using scale-sim[C]//2020 IEEE International Symposium on Performance Analysis of Systems and Software(ISPASS).IEEE,2020:58-68. [23]CHOI W,SHIN D,PARK J,et al.Sensitivity based error resilient techniques for energy efficient deep neural network accelerators[C]//Proceedings of the 56th Annual Design Automation Conference 2019.2019:1-6. [24]LEE H,KIM J,PARK J,et al.STRAIT:Self-Test and Self-Recovery for AI Accelerator[J].IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,2023,42(9):3092-3104. |
[1] | SUN Yang, DING Jianwei, ZHANG Qi, WEI Huiwen, TIAN Bowen. Study on Super-resolution Image Reconstruction Using Residual Feature Aggregation NetworkBased on Attention Mechanism [J]. Computer Science, 2024, 51(6A): 230600039-6. |
[2] | LIU Hui, JI Ke, CHEN Zhenxiang, SUN Runyuan, MA Kun, WU Jun. Malicious Attack Detection in Recommendation Systems Combining Graph Convolutional Neural Networks and Ensemble Methods [J]. Computer Science, 2024, 51(6A): 230700003-9. |
[3] | JIANG Sheng, ZHU Jianhong. Face Micro-expression Recognition Method Based on ME-ResNet [J]. Computer Science, 2024, 51(11A): 231000053-7. |
[4] | AN Yang, WANG Xiuqing, ZHAO Minghua. Mobile Robots' Path Planning Method Based on Policy Fusion and Spiking Deep ReinforcementLearning [J]. Computer Science, 2024, 51(11A): 240100211-11. |
[5] | LUO Huilan, LONG Jun, LIANG Miaomiao. Attentional Feature Fusion Approach for Siamese Network Based Object Tracking [J]. Computer Science, 2023, 50(6A): 220300237-9. |
[6] | HUANG Yujiao, CHEN Mingkai, ZHENG Yuan, FAN Xinggang, XIAO Jie, LONG Haixia. Text Classification Based on Weakened Graph Convolutional Networks [J]. Computer Science, 2023, 50(6A): 220700039-5. |
[7] | WANG Xiaofei, FAN Xueqiang, LI Zhangwei. Improving RNA Base Interactions Prediction Based on Transfer Learning and Multi-view Feature Fusion [J]. Computer Science, 2023, 50(3): 164-172. |
[8] | MEI Pengcheng, YANG Jibin, ZHANG Qiang, HUANG Xiang. Sound Event Joint Estimation Method Based on Three-dimension Convolution [J]. Computer Science, 2023, 50(3): 191-198. |
[9] | CHEN Qiaosong, WU Jiliang, JIANG Bo, TAN Chongchong, SUN Kaiwei, DEN Xin, WANG Jin. Coupling Local Features and Global Representations for 2D Human Pose Estimation [J]. Computer Science, 2023, 50(11A): 221100007-5. |
[10] | ZHANG Kaixuan, CAI Guoyong, ZHU Kunri. Image Aesthetics-enhanced Visual Perception Recommendation System [J]. Computer Science, 2023, 50(11A): 221100083-8. |
[11] | YU Yunjun, ZHANG Pengfei, GONG Hancheng, CHEN Min. Lightweight Network Hardware Acceleration Design for Edge Computing [J]. Computer Science, 2023, 50(11A): 220800045-7. |
[12] | ZHU Cheng-zhang, HUANG Jia-er, XIAO Ya-long, WANG Han, ZOU Bei-ji. Deep Hash Retrieval Algorithm for Medical Images Based on Attention Mechanism [J]. Computer Science, 2022, 49(8): 113-119. |
[13] | WANG Jian-ming, CHEN Xiang-yu, YANG Zi-zhong, SHI Chen-yang, ZHANG Yu-hang, QIAN Zheng-kun. Influence of Different Data Augmentation Methods on Model Recognition Accuracy [J]. Computer Science, 2022, 49(6A): 418-423. |
[14] | SUN Jie-qi, LI Ya-feng, ZHANG Wen-bo, LIU Peng-hui. Dual-field Feature Fusion Deep Convolutional Neural Network Based on Discrete Wavelet Transformation [J]. Computer Science, 2022, 49(6A): 434-440. |
[15] | WANG Xian-sheng, YAN Ke. Fault Detection and Diagnosis of HVAC System Based on Federated Learning [J]. Computer Science, 2022, 49(12): 74-80. |
|