Computer Science ›› 2025, Vol. 52 ›› Issue (11A): 241100104-7.doi: 10.11896/jsjkx.241100104
• Information Security • Previous Articles Next Articles
JIANG Weihao, LIU Bo
CLC Number:
| [1]BI X L,WEI Y,XIAO B,et al.RRU-Net:The ringed residual U-Net for image splicing forgery detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.2019. [2]LIU X H,LIU Y J,CHEN J,et al.PSCC-Net:Progressive spatio-channel correlation network for image manipulation detection and localization[J].IEEE Transactions on Circuits and Systems for Video Technology,2022,32(11):7505-7517. [3]DONG C B,CHEN X R,HU R H,et al.MVSSNet:Multi-View Multi-Scale Supervised Networks for Image Manipulation Detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,45(3):3539-3553. [4]GOODFELLOW I J,SHLENS J,SZEGEDY C.Explaining and harnessing adversarial examples[J].arXiv:1412.6572,2014. [5]MADRY A,MAKELOV A,SCHMIDT L,et al.Towards deep learning models resistant to adversarial attacks[J].arXiv:1706.06083,2017. [6]ROZSA A,ZHONG Z,BOULT T E.Adversarial attack on deep learning-based splice localization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.2020:648-649. [7]GRAGNANIELLO D,MARRA F,POGGI G,et al.Analysis of adversarial attacks against CNN-based image forgery detectors[C]//2018 26th European Signal Processing Conference(EUSIPCO).IEEE,2018:967-971. [8]ZHU P,OSADA G,KATAOKA H,et al.Frequency-awareGAN for adversarial manipulation generation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2023:4315-4324. [9]MATTHEW D Z,FERGUS R.Visualizing and understanding convolutional networks[C]//Computer Vision-ECCV 2014:13th European Conference,Zurich,Switzerland,Part I 13.Springer,2014:818-833. [10]VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[C]//Proceedings of the 31st International Confe-rence on Neural Information Processing Systems.2017:6000-6010. [11]ZHANG Z Y,QIAN Y,ZHAO Y X,Noise and edge based dual branch image manipulation detection[C]//Proceedings of the 2023 4th International Conference on Computing,Networks and Internet of Things.2023:963-968. [12]MA X C,DU B,JIANG Z H,et al.IML-ViT:BenchmarkingIma-ge Manipulation Localization by Vision Transformer[J].arXiv:2307.14863,2023. [13]TRIARIDIS K,MEZARIS V.Exploring Multi-Modal Fusion for Image Manipulation Detection and Localization[C]//Procee-dings of the 30th International Conference on MultiMedia Mode-ling(MMM 2024).2024. [14]GUO X,LIU X H,REN Z Y,et al.Hierarchical Fine-Grained Image Forgery Detection and Localization[C]//CVPR.2023. [15]KURAKIN A,GOODFELLOW I,BENGIO S.Adversarial machine learning at scale[J].arXiv:1611.01236,2016. [16]MADRY A,MAKELOV A,SCHMIDT L,et al.Towards deep learning models resistant to adversarial attacks[J].arXiv:1706.06083,2017. [17]PAPERNOT N,MCDANIEL P,WU X,et al.Distillation as adefense to adversarial perturbations against deep neural networks[C]//2016 IEEE Symposium on Security and Privacy(SP).IEEE,2016:582-597. [18]PAPERNOT N,MCDANIEL P,JHA S,et al.The limitations of deep learning in adversarial settings[C]//2016 IEEE European symposium on security and privacy(EuroS&P).IEEE,2016:372-387. [19]DONG Y P,LIAO F Z,PANG T Y,et al.Boosting adversarial attacks with momentum[C]//Proceedings of the IEEE Confe-rence on Computer Vision and Pattern Recognition.2018:9185-9193. [20]PAPERNOT N,MCDANIEL P,GOODFELLOW I,et al.Practical black-box attacks against machine learning[C]//Procee-dings of the 2017 ACM on Asia Conference on Computer and Communications Security.2017:506-519. [21]PAPERNOT N,MCDANIEL P,GOODFELLOW I.Transfera-bility in machine learning:from phenomena to black-box attacks using adversarial samples[J].arXiv:1605.07277,2016. [22]CHEN S Z,HE Z B,SUN C J,et al.Universal adversarial attack on attention and the resulting dataset damagenet[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,44(4):2188-2197. [23]HUANG H,CHEN Z Y,CHEN H R,et al.T-sea:Transfer-based self-ensemble attack on object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2023:20514-20523. [24]ZHU Y,CHEN C F,YAN G,et al.ARNet:Adaptive attention and residual refinement network for copy-move forgery detection[J].IEEE Transactions on Industrial Informatics,2020,16(10):6714-6723. [25]HU X F,ZHANG Z H,JIANG Z Y,et al.Span:Spatial pyra-mid attention network for image manipulation localization[C]//Computer Vision-ECCV 2020:16th European Conference,Glasgow,UK,Part XXI 16.Springer,2020:312-328. [26]FU J,LIU J,TIAN H J,et al.Dual attention network for scene segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:3146-3154. [27]HE K M,ZHANG X Y,REN S Q,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [28]GUILLARO F,COZZOLINO D,SUD A,et al.TruFor:Leveraging All-Round Clues for Trustworthy Image Forgery Detection and Localization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).2023:20606-20615. [29]WU H,CHEN Y,ZHOU J.Rethinking Image Forgery Detection via Contrastive Learning and Unsupervised Clustering[J].arXiv:2308.09307,2023. [30]KWON M J,NAM S H,YU I J,et al.Learning JPEG Compression Artifacts for Image Manipulation Detection and Localization[J].International Journal of Computer Vision,2022(8):1875-1895. |
| [1] | CHEN Jun, ZHOU Qiang, BAO Lei, TAO Qing. Linear Interpolation Method for Adversarial Attack [J]. Computer Science, 2025, 52(8): 403-410. |
| [2] | KANG Kai, WANG Jiabao, XU Kun. Balancing Transferability and Imperceptibility for Adversarial Attacks [J]. Computer Science, 2025, 52(6): 381-389. |
| [3] | CHEN Zigang, PAN Ding, LENG Tao, ZHU Haihua, CHEN Long, ZHOU Yousheng. Explanation Robustness Adversarial Training Method Based on Local Gradient Smoothing [J]. Computer Science, 2025, 52(2): 374-379. |
| [4] | BAI Yang, CHEN Jinyin, ZHENG Haibin, ZHENG Yayu. Adversarial Attack on Vertical Graph Federated Learning [J]. Computer Science, 2025, 52(11A): 241200220-10. |
| [5] | WANG Xiaofeng, HUANG Junjun, TAN Wenya, SHEN Zixuan. Object Detection Based on Deep Feature Enhancement and Path Aggregation Optimization [J]. Computer Science, 2025, 52(11): 184-195. |
| [6] | ZHENG Haibin, LIN Xiuhao, CHEN Jingwen, CHEN Jinyin. Survey of Adversarial Attack and Defense for RBG and Infrared Multimodal Object Detection [J]. Computer Science, 2025, 52(11): 349-363. |
| [7] | YUAN Mengjiao, LU Tianliang, HUANG Wanxin, HE Houhan. Benign-salient Region Based End-to-End Adversarial Malware Generation Method [J]. Computer Science, 2025, 52(10): 382-394. |
| [8] | XIONG Xi, DING Guangzheng, WANG Juan, ZHANG Shuai. DLSF:A Textual Adversarial Attack Method Based on Dual-level Semantic Filtering [J]. Computer Science, 2025, 52(10): 423-432. |
| [9] | LI Wenting, XIAO Rong, YANG Xiao. Improving Transferability of Adversarial Samples Through Laplacian Smoothing Gradient [J]. Computer Science, 2024, 51(6A): 230800025-6. |
| [10] | LI Shasha, XING Hongjie. Robust Anomaly Detection Based on Adversarial Samples and AutoEncoder [J]. Computer Science, 2024, 51(5): 363-373. |
| [11] | REN Yuheng, ZHAO Yunfeng, WU Chuang. Deep Gait Recognition Network Based on Relative Position Encoding Transformer [J]. Computer Science, 2024, 51(11A): 240400064-6. |
| [12] | GUO Yuxing, YAO Kaixuan, WANG Zhiqiang, WEN Liangliang, LIANG Jiye. Black-box Graph Adversarial Attacks Based on Topology and Feature Fusion [J]. Computer Science, 2024, 51(1): 355-362. |
| [13] | ZHOU Fengfan, LING Hefei, ZHANG Jinyuan, XIA Ziwei, SHI Yuxuan, LI Ping. Facial Physical Adversarial Example Performance Prediction Algorithm Based on Multi-modal Feature Fusion [J]. Computer Science, 2023, 50(8): 280-285. |
| [14] | LI Kun, GUO Wei, ZHANG Fan, DU Jiayu, YANG Meiyue. Adversarial Malware Generation Method Based on Genetic Algorithm [J]. Computer Science, 2023, 50(7): 325-331. |
| [15] | LIU Yifan, OU Bo, XIONG Jianqin. Adaptive Image Adversarial Reprogramming Based on Noise Invisibility Factors [J]. Computer Science, 2023, 50(4): 110-116. |
|
||