Computer Science ›› 2025, Vol. 52 ›› Issue (11A): 241200220-10.doi: 10.11896/jsjkx.241200220
• Information Security • Previous Articles Next Articles
BAI Yang, CHEN Jinyin, ZHENG Haibin, ZHENG Yayu
CLC Number:
| [1]ZHANG C,XIE Y,BAI H,et al.A survey on federated learning[J].Knowledge-Based Systems,2021,216:106775. [2]LIU P,XU X,WANG W.Threats,attacks and defenses to federated learning:issues,taxonomy and perspectives[J].Cybersecurity,2022,5(1):4. [3]HENRIQUE B M,SOBREIRO V A,KIMURA H.Literaturereview:Machine learning techniques applied to financial market prediction[J].Expert Systems with Applications,2019,124:226-251. [4]KONONENKO I.Machine learning for medical diagnosis:history,state of the art and perspective[J].Artificial Intelligence in Medicine,2001,23(1):89-109. [5]CUMMINGS D,NASSAR M.Structured citation trend predic-tion using graph neural networks[C]//ICASSP 2020-2020 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP).IEEE,2020:3897-3901. [6]GAO C,WANG X,HE X,et al.Graph neural networks for recommender system[C]//Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining.2022:1623-1625. [7]ZHANG X M,LIANG L,LIU L,et al.Graph neural networks and their current applications in bioinformatics[J].Frontiers in Genetics,2021,12:690049. [8]LUAN H,TSAI C C.A review of using machine learning approaches for precision education[J].Educational Technology & Society,2021,24(1):250-266. [9]YU B,MBO W,LV Y,et al.A survey on federated learning in data mining[J].Wiley Interdisciplinary Reviews:Data Mining and Knowledge Discovery,2022,12(1):1-20. [10]HARD A,RAO K,MATHEWS R,et al.Federated learn-ing for mo-bile keyboard prediction[J].arXiv:1811.03604,2018. [11]YANG Q,LIU Y,CHEN T,et al.Federated machine learning:Concept and applications[J].ACM Transactions on Intelligent Systems and Technology(TIST),2019,10(2):1-19. [12]WU Z,PAN S,CHEN F,et al.A comprehensive survey ongraph neural networks[J].IEEE Transactions on Neural Networks and Learning Systems,2020,32(1):4-24. [13]ZHAO T,JIN W,LIU Y,et al.Graph data augmentation for graph machine learning:A survey[J].arXiv:2202.08871,2022. [14]KIPF T N,WELLING M.Semi-supervised classification withgra-ph convolutional networks[J].arXiv:1609.02907,2016. [15]HAMILTON W,YING Z,LESKOVEC J.Inductive representation learning on large graphs[J].Advances in Neural Information Processing Systems,2017,30:1-11. [16]VELIČKOVIC′ P,CUCURULL G,CASANOVA A,et al.Graph attention networks[J].arXiv:1710.10903,,2017. [17]LI Y,CHENG M,HSIEH C J,et al.A review of adversarial attack and defense for classification methods[J].The American Statistician,2022,76(4):329-345. [18]ZHANG T,LIAO B,YU J,et al.Benchmarking and Analysis for Graph Neural Network Node Classification Task[J].Computer Science,2024,51(4):132-150. [19]DAI H,LI H,TIAN T,et al.Adversarial attack on graph structured data[C]//International Conference on Machine Learning.PMLR,2018:1115-1124. [20]LI J,XIE T,CHEN L,et al.Adversarial attack on large scale graph[J].IEEE Transactions on Knowledge and Data Engineering,2021,35(1):82-95. [21]ZÜGNER D,AKBARNEJAD A,GÜNNEMANN S.Adversarial attacks on neural networks for graph data[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2018:2847-2856. [22]SUN Y,WANG S,TANG X,et al.Node injection attacks on graphs via reinforcement learning[J].arXiv:1909.06543,2019. [23]GOODFELLOW I J,SHLENS J,SZEGEDY C.Explaining and harnessing adversarial examples[J].arXiv:1412.6572,2014. [24]DWORK C,MCSHERRY F,NISSIM K,et al.Calibrating noise to sensitivity in private data analysis[C]//Proceedings of Theoryof Cryptography Conference.2006:265-284. [25]ABADI M,CHU A,GOODFELLOW I,et al.Deep learning with differential privacy[C]//Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security.2016:308-318. [26]WANG C,LIANG J,HUANG M,et al.Hybrid differentially private federated learning on vertically partitioned data[J].ar-Xiv:2009.02763,2020. [27]YANG Z,COHEN W,SALAKHUDINOV R.Revisiting semi-supervised learning with graph embeddings[C]//International Conference on Machine Learning.PMLR,2016:40-48. [28]SHCHUR O,MUMME M,BOJCHEVSKI A,et al.Pitfalls of graph neural network evaluation[J].arXiv:1811.05868,2018. [29]SUN M,TANG J,LI H,et al.Data poisoning attack against unsupervised node embedding methods[J].arXiv:1810.12881,2018. [30]WU H,WANG C,TYSHETSKIY Y,et al.Adversarial examples for graph data:deep insights into attack and defense[C]//Proceedings of the Twenty Eighth International Joint Confe-rence on Artificial Intelligence(IJCAI).2019:4816-4823. [31]SUN M,DING X N,CHENG Q.Federated Learning Scheme Based on Differential Privacy[J].Computer Science,2024,51(S1):230600211-6. |
| [1] | LI Yaru, WANG Qianqian, CHE Chao, ZHU Deheng. Graph-based Compound-Protein Interaction Prediction with Drug Substructures and Protein 3D Information [J]. Computer Science, 2025, 52(9): 71-79. |
| [2] | WU Hanyu, LIU Tianci, JIAO Tuocheng, CHE Chao. DHMP:Dynamic Hypergraph-enhanced Medication-aware Model for Temporal Health EventPrediction [J]. Computer Science, 2025, 52(9): 88-95. |
| [3] | SU Shiyu, YU Jiong, LI Shu, JIU Shicheng. Cross-domain Graph Anomaly Detection Via Dual Classification and Reconstruction [J]. Computer Science, 2025, 52(8): 374-384. |
| [4] | CHEN Jun, ZHOU Qiang, BAO Lei, TAO Qing. Linear Interpolation Method for Adversarial Attack [J]. Computer Science, 2025, 52(8): 403-410. |
| [5] | TANG Boyuan, LI Qi. Review on Application of Spatial-Temporal Graph Neural Network in PM2.5 ConcentrationForecasting [J]. Computer Science, 2025, 52(8): 71-85. |
| [6] | GUO Husheng, ZHANG Xufei, SUN Yujie, WANG Wenjian. Continuously Evolution Streaming Graph Neural Network [J]. Computer Science, 2025, 52(8): 118-126. |
| [7] | LUO Xuyang, TAN Zhiyi. Knowledge-aware Graph Refinement Network for Recommendation [J]. Computer Science, 2025, 52(7): 103-109. |
| [8] | HAO Jiahui, WAN Yuan, ZHANG Yuhang. Research on Node Learning of Graph Neural Networks Fusing Positional and StructuralInformation [J]. Computer Science, 2025, 52(7): 110-118. |
| [9] | LI Mengxi, GAO Xindan, LI Xue. Two-way Feature Augmentation Graph Convolution Networks Algorithm [J]. Computer Science, 2025, 52(7): 127-134. |
| [10] | JIANG Kun, ZHAO Zhengpeng, PU Yuanyuan, HUANG Jian, GU Jinjing, XU Dan. Cross-modal Hypergraph Optimisation Learning for Multimodal Sentiment Analysis [J]. Computer Science, 2025, 52(7): 210-217. |
| [11] | ZHENG Chuangrui, DENG Xiuqin, CHEN Lei. Traffic Prediction Model Based on Decoupled Adaptive Dynamic Graph Convolution [J]. Computer Science, 2025, 52(6A): 240400149-8. |
| [12] | TENG Minjun, SUN Tengzhong, LI Yanchen, CHEN Yuan, SONG Mofei. Internet Application User Profiling Analysis Based on Selection State Space Graph Neural Network [J]. Computer Science, 2025, 52(6A): 240900060-8. |
| [13] | SHI Enyi, CHANG Shuyu, CHEN Kejia, ZHANG Yang, HUANG Haiping. BiGCN-TL:Bipartite Graph Convolutional Neural Network Transformer Localization Model for Software Bug Partial Localization Scenarios [J]. Computer Science, 2025, 52(6A): 250200086-11. |
| [14] | CHEN Wangxu, WEN Hao, NI Yang. Application of Requirements Traceability in Code Static Analysis [J]. Computer Science, 2025, 52(6A): 241000024-5. |
| [15] | KANG Kai, WANG Jiabao, XU Kun. Balancing Transferability and Imperceptibility for Adversarial Attacks [J]. Computer Science, 2025, 52(6): 381-389. |
|
||