Computer Science ›› 2025, Vol. 52 ›› Issue (9): 212-219.doi: 10.11896/jsjkx.240700159
• Database & Big Data & Data Science • Previous Articles Next Articles
HUANG Chao, CHENG Chunling, WANG Youkang
CLC Number:
[1]ZHANG L,FU J,WANG S,et al.Guide Subspace Learning for Unsupervised Domain Adaptation[J].IEEE Transactions on Neural Networks and Learning Systems,2019,31(9):3374-3388. [2]TIAN J,ZHANG J,WEN L,et al.VDM-DA:Virtual DomainModeling for Source Data-Free Domain Adaptation[J].IEEE Transactions on Circuits and Systems for Video Technology,2021,32(6):3749-3760. [3]LI R,JIAO Q,CAO W,et al.Model Adaptation:Unsupervised Domain Adaptation without Source Data[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Computer Society,2020:9641-9650. [4]LIANG J,HU D,FENG J.Do We Really Need to Access the Source Data? Source Hypothesis Transfer for Unsupervised Domain Adaptation[C]//Proceedings of International Conference on Machine Learning.New York:ACM,2020:6028-6039. [5]YANG S,WANG Y,WEIJER J,et al.Exploiting the Intrinsic Neighborhood Structure for Source-Free Domain Adaptation[J].Advances in Neural Information Processing Systems,2021,34:29393-29405. [6]LITRICO M,BUE A,MORERIO P.Guiding Pseudo-labels with Uncertainty Estimation for Source-free Unsupervised Domain Adaptation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Computer Society,2023:7640-7650. [7]WU J,WANG G,GU R,et al.UPL-SFDA:Uncertainty-aware Pseudo Label Guided Source-Free DomainAdaptation for Medical Image Segmentation[J].IEEE Transactions on Medical Imaging,2023,42(12):3932-3943. [8]CHEN X,YANG H,ZHANG H,et al.Uncertainty-AwarePseudo-Label Filtering for Source-Free Unsupervised Domain Adaptation[J].Neurocomputing,2024,575:127190. [9]LI J,YU Z,DU Z,et al.A Comprehensive Survey on Source-free Domain Adaptation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2024,46(8):5743-5762. [10]CUI C,ZHANG C,LIU Z,et al.Adversarial Source Generation for Source-Free Domain Adaptation[J].IEEE Transactions on Circuits and Systems for Video Technology,2024,34(6):4887-4898. [11]HE J,WU L,TAO C,et al.Source-Free Domain Adaptationwith Unrestricted Source Hypothesis[J].Pattern Recognition,2024,149:110246. [12]XIA H,ZHAO H,DING Z.Adaptive Adversarial Network for Source-free Domain Adaptation[C]//Proceedings of IEEE International Conference on Computer Vision.Piscataway,NJ:IEEE Computer Society,2021:9010-9019. [13]TIAN Q,PENG S,MA T.Source-Free Unsupervised Domain Adaptation with Trusted Pseudo Samples[J].ACM Transactions on Intelligent Systems and Technology,2023,14(2):1-17. [14]DING Y,SHENG L,LIANG J,et al.ProxyMix:Proxy-based Mixup Training with Label Refinery for Source-Free Domain Adaptation[J].Neural Networks,2023,167:92-103. [15]KIM Y,CHO D,HAN K,et al.Domain Adaptation withoutSource Data[J].IEEE Transactions on Artificial Intelligence,2021,2(6):508-518. [16]AHMED W,MORERIO P,MURINO V.Cleaning Noisy Labels by Negative Ensemble Learning for Source-Free Unsupervised Domain Adaptation[C]//Proceedings of IEEE Winter Confe-rence on Applications of Computer Vision.Piscataway,NJ:IEEE Computer Society,2022:1616-1625. [17]KIM Y,YIM J,YUN J,et al.NLNL:Negative Learning forNoisy Labels[C]//Proceedings of IEEE International Confe-rence on Computer Vision.Piscataway,NJ:IEEE Computer So-ciety,2019:101-110. [18]ZHANG C,BENGIO S,HARDT M,et al.Understanding Deep Learning (still) Requires Rethinking Generalization[J].Communications of the ACM,2021,64(3):107-115. [19]MA X,HUANG H,WANG Y,et al.Normalized Loss Functions for Deep Learning with Noisy Labels[C]//Proceedings of International Conference on Machine Learning.New York:ACM,2020:6543-6553. [20]WEI H,FENG L,CHEN X,et al.Combating Noisy Labels by Agreement:A Joint Training Method with Co-Regularization[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Computer Society,2020:13726-13735. [21]SAENKO K,KULIS B,FRITZ M,et al.Adapting Visual Category Models to New Domains[C]//Proceedings of European Conference on Computer Vision.Berlin:Springer,2010:213-226. [22]VENKATESWARA H,EUSEBIO J,CHAKRABORTY S,et al.Deep Hashing Network for Unsupervised Domain Adaptation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Computer Society,2017:5018-5027. [23]PENG X,USMAN B,KAUSHIK N,et al.VisDA:The Visual Domain Adaptation Challenge[J].arXiv:1710.06924,2017. [24]GANIN Y,USTINOVA E,AJAKAN H,et al.Domain-Adversarial Training of Neural Networks[J].Journal of Machine Learning Research,2016,17(59):1-35. [25]XU R,LI G,YANG J,et al.Larger norm more transferable:An adaptive feature norm approach for unsupervised domain adaptation[C]//Proceedings of IEEE International Conference on Computer Vision.Piscataway,NJ:IEEE Computer Society,2019:1426-1435. [26]LIANG J,HU D,FENG J.Domain Adaptation with Auxiliary Target Domain-Oriented Classifier[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Computer Society,2021:16632-16642. [27]HE K,ZHANG X,REN S,et al.Deep Residual Learning for Image Recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Computer Society,2016:770-778. [28]TANG S,SU W,YE M,et al.Source-Free Domain Adaptation with Frozen Multimodal Foundation Model[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Computer Society,2024:23711-23720. |
[1] | ZHANG Shiju, GUO Chaoyang, WU Chengliang, WU Lingjun, YANG Fengyu. Text Clustering Approach Based on Key Semantic Driven and Contrastive Learning [J]. Computer Science, 2025, 52(8): 171-179. |
[2] | ZHANG Taotao, XIE Jun, QIAO Pingjuan. Specific Emitter Identification Based on Progressive Self-training Open Set Domain Adaptation [J]. Computer Science, 2025, 52(7): 279-286. |
[3] | YE Jiale, PU Yuanyuan, ZHAO Zhengpeng, FENG Jue, ZHOU Lianmin, GU Jinjing. Multi-view CLIP and Hybrid Contrastive Learning for Multimodal Image-Text Sentiment Analysis [J]. Computer Science, 2025, 52(6A): 240700060-7. |
[4] | FU Shufan, WANG Zhongqing, JIANG Xiaotong. Zero-shot Stance Detection in Chinese by Fusion of Emotion Lexicon and Graph ContrastiveLearning [J]. Computer Science, 2025, 52(6A): 240500051-7. |
[5] | LI Jianghui, DING Haiyan, LI Weihua. Prediction of Influenza A Antigenicity Based on Few-shot Contrastive Learning [J]. Computer Science, 2025, 52(6A): 240800053-6. |
[6] | LIU Yuanhong, WU Yubin. Local Linear Embedding Algorithm Based on Probability Model and Information Entropy [J]. Computer Science, 2025, 52(6A): 240500021-8. |
[7] | LIU Yufei, XIAO Yanhui, TIAN Huawei. PRNU Fingerprint Purification Algorithm for Open Environment [J]. Computer Science, 2025, 52(6): 187-199. |
[8] | CHEN Yadang, GAO Yuxuan, LU Chuhan, CHE Xun. Saliency Mask Mixup for Few-shot Image Classification [J]. Computer Science, 2025, 52(6): 256-263. |
[9] | WU Pengyuan, FANG Wei. Study on Graph Collaborative Filtering Model Based on FeatureNet Contrastive Learning [J]. Computer Science, 2025, 52(5): 139-148. |
[10] | MIAO Zhuang, CUI Haoran, ZHANG Qiyang, WANG Jiabao, LI Yang. Restoration of Atmospheric Turbulence-degraded Images Based on Contrastive Learning [J]. Computer Science, 2025, 52(5): 171-178. |
[11] | TIAN Qing, KANG Lulu, ZHOU Liangyu. Class-incremental Source-free Domain Adaptation Based on Multi-prototype Replay andAlignment [J]. Computer Science, 2025, 52(3): 206-213. |
[12] | YUAN Ye, CHEN Ming, WU Anbiao, WANG Yishu. Graph Anomaly Detection Model Based on Personalized PageRank and Contrastive Learning [J]. Computer Science, 2025, 52(2): 80-90. |
[13] | XU Jiucheng, ZHANG Shan, BAI Qing, MA Miaoxian. Attribute Reduction Algorithm Based on Fuzzy Neighborhood Relative Decision Entropy [J]. Computer Science, 2025, 52(2): 165-172. |
[14] | LIU Yanlun, XIAO Zheng, NIE Zhenyu, LE Yuquan, LI Kenli. Case Element Association with Evidence Extraction for Adjudication Assistance [J]. Computer Science, 2025, 52(2): 222-230. |
[15] | YE Lishuo, HE Zhixue. Multi-granularity Time Series Contrastive Learning Method Incorporating Time-Frequency Features [J]. Computer Science, 2025, 52(1): 170-182. |
|