Computer Science ›› 2025, Vol. 52 ›› Issue (11A): 241200041-8.doi: 10.11896/jsjkx.241200041

• Big Data & Data Science • Previous Articles     Next Articles

Remaining Useful Life Prediction of Lithium-ion Batteries Based on Frequency-channelAttention Mechanism and MSCNet

LU Shiyu1, WANG Hairui1, ZHU Guifu2,3, LI Yalong1   

  1. 1 School of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650504,China
    2 Information Construction Management Center,Kunming University of Science and Technology,Kunming 650504,China
    3 AI Joint Research Center,Kunming University of Science and Technology-Shuguang Information Industry Co.,Ltd.,Kunming 650504,China
  • Online:2025-11-15 Published:2025-11-10
  • Supported by:
    National Natural Science Foundation of China(61863016).

Abstract: To address issues such as inaccurate feature extraction,significant data noise,and low precision in tracking capacity degradation trends in lithium-ion battery capacity estimation,a novel model combining the Frequency Channel Attention Mechanism(FCA) and Multi-Scale Inter-Series Correlations Net(MSCNet) is proposed.The model is designed in three stages.Firsty,raw sensor data are preprocessed to remove noise.Secondly,prominent periodic patterns are extracted through frequency domain analysis using the frequency-enhanced attention mechanism.Finally,the multi-scale outputs are aggregated by MSCNet,reducing model parameters while improving effectiveness of feature extraction.Experiments based on publicly available CALCE and NASA datasets demonstrate that the proposed model reduces relative error(RE) in battery life prediction by 10%~20% compared to existing algorithms,enabling more accurate tracking of battery degradation trends.

Key words: Lithiumion battery, Remaining useful life prediction, Attention mechanism, Multi-scale, Inter-series correlation

CLC Number: 

  • TM912
[1]HUANG K,DING H,GUO Y F,et al.Prediction of remaining useful life of lithium-ion battery based on adaptive data preprocessing and long short-term memory network[J].Transactions of China Electrotechnical Society,2022,37(15):3753-3766.
[2]LI F,MIN Y,ZHANG Y,et al.State-of-health estimation me-thod for fast-charging lithium-ion batteries based on stacking ensemble sparse Gaussian process regression[J].Reliability Engineering & System Safety,2024,242(2):1-13.
[3]WU Z Q,CHEN H J.Joint estimation of SOC and SOH of lithium battery based on adaptive H2/H∞ filtering[J].Journal of Metrology,2023,44(11):1719-1727.
[4]LI Z H,SHI Q L,WANG K L,et al.Research status and prospect of state of health estimation method for lithium-ion battery[J/OL].http://kns.cnki.net/kcms/detail/32.1180.TP.20240715.1700.006.html.
[5]NIU Z Y,JIANG X,XIE B,et al.Study on simulation and safety protection of electric vehicle overcharge and explosion accident[J].Transactions of China Electrotechnical Society,2022,37(1):36-47,57.
[6]SHU X,SHEN J W,LI G,et al.A Flexible State-of-Health Prediction Scheme for Lithium-Ion BatteryPackth Long Short-Term Memory Network and Transfer Learning[J].IEEE Transactions on Transportation Electation,2021,7(4):2238-2248.
[7]SU S S,LI W,MOU J H,et al.A Hybrid Battery Equivalent Circuit Model,Deep Learning,and Transfer Learfor Battery State Monitoring[J].IEEE Transactions on Transportation Electrification,2023,9(1):1113-1127.
[8]WU Z Q,HU X Y,MA B Y,et al.Lithium Battery SOC Estimation Based on RFF and GWO-PF [J].Journal of Quantitative & Technical Economics,2022,43(9):1200-1207.
[9]SHAHID F,ZAMEER A,MUNEEBM.A Novel Genetic LSTM Model for Wind Power Forecast[J].Energy,2021,10(1):1016-1020.
[10]DING G,WANG W,ZHU T.Remaining useful life prediction for lithium-ion batteries based on CS-VMD and GRU[J].IEEE Access,2022,10:89402-89413.
[11]XIAO S,LIU P,CHEN K,et al.Battery state of health prediction based on voltage intervals,BP neural netwnd genetic algorithm[J].International Journal of Green Energy,2024,21(8):1743-1756.
[12]JIA C,TIAN Y,SHI Y,et al.State of health prediction of lithium-ion batteries based on bidirectionalgatedurrent unit and transformer[J].Energy,2023,285:129401-129409.
[13]ZHANG M D,LIU Y,CHEN J,et al.Lithium-ion BatteryHealth State Estimation Based on ISSA-GPR [J/OL].http://kns.cnki.net/kcms/detail/12.1420.TM.20231219.1345.010.html.
[14]SONG W,WU D,SHEN W,et al.A remaining useful life prediction method for lithiumion battery based on temporal transformer network[J].Procedia Computer Science,2023,217:1830-1838.
[15]ZHOU T,MA Z,WEN Q,et al.Fedformer:Frequency enhanced decomposed transformer for long-term series forecasting[C]//International Conference on Machine Learning.PMLR,2022:27268-27286.
[16]ZHOU T,MA Z,WEN Q,et al.Film:Frequency improved legendre memory model for long-term time series forecasting[J].Advances in Neural Information Processing systems,2022,35:12677-12690.
[17]SHIZGAL B D,JUNGJ H.Towards the resolution of the Gibbs phenomena[J].Journal of Computational and Applied Mathematics,2003,161(1):41-65.
[18]SHAZEER N,MIRHOSEINI A,MAZIARZ K,et al.Outra-geously large neural networks:The sparsely-gated mixture-of-experts layer[J].arXiv:1701.06538,2017.
[19]SHEN J,MA W,SHU X,et al.Accurate state of health estimation for lithium-ion batteries under random charging scenarios[J].Energy,2023,279:128092.
[20]XIA X Y,YUE J H,ZENG X Y,et al.A Remaining Capacity Estimation Method for Lithiumion Batteries Based on State-Dependent RBF-ARX Model [J/OL].http://kns.cnki.net/kcms/detail/11.2107.TM.20240613.1329.012.html.
[21]LI C,ZHANG H L,ZHANG J P.Health Status Estimation of Spent Lithium-ion Batteries Based on Kernel Functions and Hyperparameter Optimization[J].Energy Storage Science and Technology,2024,13(6):2010-2021.
[22]WANG P,PENG X Y,CHENG Z,et al.A multi-time-scale state joint estimation method for lithiumion batteries based on data-driven model fusion [J].Automotive Engineering,2022,44(3):362-371,378.
[23]CHEN D,HONG W,ZHOU X.Transformer network for remaining useful life prediction of lithium-ion batteries[J].IEEE Access,2022,10:19621-19628.
[24]ZHOU H,LI J,ZHANG S,et al.Expanding the prediction capacity in long sequence time-series forecasting[J].Artificial Intelligence,2023,318:103886-10392.
[25]WU H,XU J,WANG J,et al.Autoformer:Decomposition transformers with auto-correlation for long-term series forecasting[J].Advances in Neural Information Processing Systems,2021,34:22419-22430.
[26]WU H,HU T,LIU Y,et al.Timesnet:Temporal 2d-variationmodeling for general time series analysis[J].arXiv:2210.02186,2023.
[27]YANG J S,FANG W GCHEN J Y,et al.A lithium-ion battery remaining useful life prediction method based on unscented particle filter and optimal combination strategy[J].Journal of Energy Storage,2022,55:105648.
[28]ZHANG Y,CHEN L,LI Y,et al.A hybrid approach for remaining useful life prediction of lithiumion battery with adaptive levy flight optimized particle filter and long shortterm memory network[J].Journal of Energy Storage,2021,44:103245.
[1] PENG Jiao, HE Yue, SHANG Xiaoran, HU Saier, ZHANG Bo, CHANG Yongjuan, OU Zhonghong, LU Yanyan, JIANG dan, LIU Yaduo. Text-Dynamic Image Cross-modal Retrieval Algorithm Based on Progressive Prototype Matching [J]. Computer Science, 2025, 52(9): 276-281.
[2] GAO Long, LI Yang, WANG Suge. Sentiment Classification Method Based on Stepwise Cooperative Fusion Representation [J]. Computer Science, 2025, 52(9): 313-319.
[3] JIANG Yunliang, JIN Senyang, ZHANG Xiongtao, LIU Kaining, SHEN Qing. Multi-scale Multi-granularity Decoupled Distillation Fuzzy Classifier and Its Application inEpileptic EEG Signal Detection [J]. Computer Science, 2025, 52(9): 37-46.
[4] LIU Jian, YAO Renyuan, GAO Nan, LIANG Ronghua, CHEN Peng. VSRI:Visual Semantic Relational Interactor for Image Caption [J]. Computer Science, 2025, 52(8): 222-231.
[5] LIU Chengzhuang, ZHAI Sulan, LIU Haiqing, WANG Kunpeng. Weakly-aligned RGBT Salient Object Detection Based on Multi-modal Feature Alignment [J]. Computer Science, 2025, 52(7): 142-150.
[6] ZHUANG Jianjun, WAN Li. SCF U2-Net:Lightweight U2-Net Improved Method for Breast Ultrasound Lesion SegmentationCombined with Fuzzy Logic [J]. Computer Science, 2025, 52(7): 161-169.
[7] ZHENG Cheng, YANG Nan. Aspect-based Sentiment Analysis Based on Syntax,Semantics and Affective Knowledge [J]. Computer Science, 2025, 52(7): 218-225.
[8] WANG Youkang, CHENG Chunling. Multimodal Sentiment Analysis Model Based on Cross-modal Unidirectional Weighting [J]. Computer Science, 2025, 52(7): 226-232.
[9] KONG Yinling, WANG Zhongqing, WANG Hongling. Study on Opinion Summarization Incorporating Evaluation Object Information [J]. Computer Science, 2025, 52(7): 233-240.
[10] LIU Yajun, JI Qingge. Pedestrian Trajectory Prediction Based on Motion Patterns and Time-Frequency Domain Fusion [J]. Computer Science, 2025, 52(7): 92-102.
[11] WANG Yicheng, NING Tai, LIU Xinyu, LUO Ye. Position-aware Based Multi-modality Lung Cancer Survival Prediction Method [J]. Computer Science, 2025, 52(6A): 240500089-8.
[12] GUAN Xin, YANG Xueyong, YANG Xiaolin, MENG Xiangfu. Tumor Mutation Prediction Model of Lung Adenocarcinoma Based on Pathological [J]. Computer Science, 2025, 52(6A): 240700010-8.
[13] TAN Jiahui, WEN Chenyan, HUANG Wei, HU Kai. CT Image Segmentation of Intracranial Hemorrhage Based on ESC-TransUNet Network [J]. Computer Science, 2025, 52(6A): 240700030-9.
[14] CHEN Xianglong, LI Haijun. LST-ARBunet:An Improved Deep Learning Algorithm for Nodule Segmentation in Lung CT Images [J]. Computer Science, 2025, 52(6A): 240600020-10.
[15] LI Daicheng, LI Han, LIU Zheyu, GONG Shiheng. MacBERT Based Chinese Named Entity Recognition Fusion with Dependent Syntactic Information and Multi-view Lexical Information [J]. Computer Science, 2025, 52(6A): 240600121-8.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!