Computer Science ›› 2025, Vol. 52 ›› Issue (11A): 250300110-8.doi: 10.11896/jsjkx.250300110
• Artificial Intelligence • Previous Articles Next Articles
ZHU Renze1, YANG Ning1, WANG Baohui2
CLC Number:
| [1]ISO/IEC.2011 Systems and software engineering-Systems and software Quality Requirements and Evaluation(SQuaRE)-System and software quality models:ISO/IEC 25010[S].2011. [2]ZHANG P,CHEN N,SHEN S,et al.AI-enabled space-air-ground integrated networks:Management and optimization[J].IEEE Network,2024,38(2):186-192. [3]SUN L,CHENG Z,KONG D,et al.Modeling and analysis of human-machine mixed traffic flow considering the influence of the trust level toward autonomous vehicles[J].Simulation Mo-delling Practice and Theory,2023,125:102741. [4]HOPKO S K,MEHTA R K,PAGILLA P R.Physiological and perceptual consequences of trust in collaborative robots:An Empirical Investigation of Human and Robot Factors[J].Applied Ergonomics,2023,106:103863. [5]STUCK R E,TOMLINSONB J,WALKER B N.The impor-tance of incorporating risk into human-automation trust[J].Theoretical Issues in Ergonomics Science,2022,23(4):500-516. [6]AKASH K,MCMAHON G,REID T,et al.Human trust-based feedback control:Dynamically varying automationtransparency to optimize human-machine interactions[J].IEEE Control Systems Magazine,2020,40(6):98-116. [7]DE VISSER E J,MONFORT S S,MCKENDRICK R,et al.Almost human:Anthropomorphism increases trust resilience in cognitive agents[J].Journal of Experimental Psychology:Applied,2016,22(3):331. [8]LUSTER M S,PITTS B J.Trust in automation:the effects of system certainty on decision-making[C]//Proceedings of the Human Factors and Ergonomics Society Annual Meeting.Los Angeles,CA:SAGE Publications,2021:32-36. [9]YUKSEL B F,COLLISSON P,CZERWINSKI M.Brains orbeauty:How to engender trust in user-agent interactions[J].ACM Transactions on Internet Technology,2017,17(1):1-20. [10]TENHUNDFELD N L,DE VISSER E J,HARING K S,et al.Calibrating trust in automation through familiarity with the autoparking feature of a Tesla Model X[J].Journal of Cognitive Engineering and Decision Making,2019,13(4):279-294. [11]WALLISER J C,DE VISSER E J,SHAW T H.Application of a system-wide trust strategy when supervising multiple autonomous agents[C]//Proceedings of the Human Factors and Ergonomics Society Annual Meeting.Los Angeles,CA:SAGE Publications,2016:133-137. [12]JESSUP S A,SCHNEIDER T R,ALARCON G M,et al.Themeasurement of the propensity to trust automation[C]//Virtual,Augmented and Mixed Reality.Applications and Case Studies:11th International Conference,VAMR 2019,Held as Part of the 21st HCI International Conference(HCII 2019).Springer,2019:476-489. [13]GLIKSON E,WOOLLEY A W.Human trust in artificial intelligence:Review of empirical research[J].Academy of Management Annals,2020,14(2):627-660. [14]JIAN J Y,BISANTZ A M,DRURY C G.Foundations for anempirically determined scale of trust in automated systems[J].International Journal of Cognitive Ergonomics,2000,4(1):53-71. [15]ULLMAN D,MALLE B F.What does it mean to trust a robot? Steps toward a multidimensional measure of trust[C]//Companion of the 2018 ACM/IEEE International Conference on Human-Robot Interaction.2018:263-264. [16]WOJTON H M,PORTER D,LANE S T,et al.Initial validationof the trust of automated systems test(TOAST)[J].The Journal of Social Psychology,2020,160(6):735-750. [17]LU Y,SARTER N.Eye tracking:a process-oriented method for inferring trust in automation as a function of priming and system reliability[J].IEEE Transactions on Human-Machine Systems,2019,49(6):560-568. [18]AYOUB J,AVETISIAN L,YANG X J,et al.Real-time trust prediction in conditionally automated driving using physiological measures[J].IEEE Transactions on Intelligent Transportation Systems,2023,24(12):14642-14650. [19]PERELLO-MARCH J R,BURNS C ,WOODMAN R,et al.Using fNIRS to verify trust in highly automated driving[J].IEEE Transactions on Intelligent Transportation Systems,2022,24(1):739-751. [20]OH S,SEONG Y,YI S,et al.Neurological measurement of hu-man trust in automation using electroencephalogram[J].International Journal of Fuzzy Logic and Intelligent Systems,2020,20(4):261-271. [21]WESTPHAL M,VÖSSING M,SATZGER G,et al.Decisioncontrol and explanations in human-AI collaboration:Improving user perceptions and compliance[J].Computers in Human Behavior,2023,144:107714. [22]REZAEI KHAVAS Z,KOTTURU M R,AHMADZADEH SR,et al.Do humans trust robots that violate moral trust?[J].ACM Transactions on Human-Robot Interaction,2024,13(2):1-30. [23]REMPEL J K,HOLMES J G,ZANNA M P.Trust in close rela-tionships[J].Journal of Personality and Social Psychology,1985,49(1):95. [24]LEE J,MORAY N.Trust,control strategies and allocation of function in human-machine systems[J].Ergonomics,1992,35(10):1243-1270. [25]HU W L,AKASH K,REID T,et al.Computational modelingof the dynamics of human trust during human-machine interactions[J].IEEE Transactions on Human-Machine Systems,2018,49(6):485-497. [26]CHEN S,ZHAO Y B,WANG Y,et al.A human-machine trust model integrating machine estimated performance[C]//2023 6th International Symposium on Autonomous Systems(ISAS).IEEE,2023:1-6. [27]RABBY M K M,KHAN M A,KARIMODDINI A,et al.Modeling of trust within a human-robot collaboration framework[C]//2020 IEEE International Conference on Systems,Man,and Cybernetics(SMC).IEEE,2020:4267-4272. [28]GUO Y,YANG X J.Modeling and predicting trust dynamics in human-robot teaming:A Bayesian inference approach[J].International Journal of Social Robotics,2021,13(8):1899-1909. [29]VELICˇKOVIĆ P,CUCURULL G,CASANOVA A,et al.Graph attention networks[J].arXiv:1710.10903,2017. [30]LIU Y,DONG H,WANG X,et al.Time series prediction based on temporal convolutional network[C]//2019 IEEE/ACIS 18th International Conference on Computer and Information Science(ICIS).IEEE,2019:300-305. [31]BI J,XU K,YUAN H,et al.Network attack prediction with hybrid temporal convolutional network and bi-directional GRU[J].IEEE Internet of Things Journal,2024,11(7):12619-12630. [32]CEGARRA J,VALÉRY B,AVRIL E,et al.OpenMATB:Amulti-attribute task battery promoting task customization,software extensibility and experiment replicability[J].Behavior Research Methods,2020,52:1980-1990. [33]PASZKE A,GROSS S,MASSA F,et al.PyTorch:An imperative style,high-performance deep learning library[C]//Advances in Neural Information Processing Systems.2019. [34]KINGMA D P,BA J.Adam:A method for stochastic optimization[J].arXiv:1412.6980,2014. |
| [1] | YIN Shi, SHI Zhenyang, WU Menglin, CAI Jinyan, YU De. Deep Learning-based Kidney Segmentation in Ultrasound Imaging:Current Trends and Challenges [J]. Computer Science, 2025, 52(9): 16-24. |
| [2] | ZENG Lili, XIA Jianan, LI Shaowen, JING Maike, ZHAO Huihui, ZHOU Xuezhong. M2T-Net:Cross-task Transfer Learning Tongue Diagnosis Method Based on Multi-source Data [J]. Computer Science, 2025, 52(9): 47-53. |
| [3] | LI Yaru, WANG Qianqian, CHE Chao, ZHU Deheng. Graph-based Compound-Protein Interaction Prediction with Drug Substructures and Protein 3D Information [J]. Computer Science, 2025, 52(9): 71-79. |
| [4] | LUO Chi, LU Lingyun, LIU Fei. Partial Differential Equation Solving Method Based on Locally Enhanced Fourier NeuralOperators [J]. Computer Science, 2025, 52(9): 144-151. |
| [5] | LIU Leyuan, CHEN Gege, WU Wei, WANG Yong, ZHOU Fan. Survey of Data Classification and Grading Studies [J]. Computer Science, 2025, 52(9): 195-211. |
| [6] | LIU Wei, XU Yong, FANG Juan, LI Cheng, ZHU Yujun, FANG Qun, HE Xin. Multimodal Air-writing Gesture Recognition Based on Radar-Vision Fusion [J]. Computer Science, 2025, 52(9): 259-268. |
| [7] | LIU Zhengyu, ZHANG Fan, QI Xiaofeng, GAO Yanzhao, SONG Yijing, FAN Wang. Review of Research on Deep Learning Compiler [J]. Computer Science, 2025, 52(8): 29-44. |
| [8] | TANG Boyuan, LI Qi. Review on Application of Spatial-Temporal Graph Neural Network in PM2.5 ConcentrationForecasting [J]. Computer Science, 2025, 52(8): 71-85. |
| [9] | ZHENG Cheng, YANG Nan. Aspect-based Sentiment Analysis Based on Syntax,Semantics and Affective Knowledge [J]. Computer Science, 2025, 52(7): 218-225. |
| [10] | ZHOU Lei, SHI Huaifeng, YANG Kai, WANG Rui, LIU Chaofan. Intelligent Prediction of Network Traffic Based on Large Language Model [J]. Computer Science, 2025, 52(6A): 241100058-7. |
| [11] | GUAN Xin, YANG Xueyong, YANG Xiaolin, MENG Xiangfu. Tumor Mutation Prediction Model of Lung Adenocarcinoma Based on Pathological [J]. Computer Science, 2025, 52(6A): 240700010-8. |
| [12] | TAN Jiahui, WEN Chenyan, HUANG Wei, HU Kai. CT Image Segmentation of Intracranial Hemorrhage Based on ESC-TransUNet Network [J]. Computer Science, 2025, 52(6A): 240700030-9. |
| [13] | RAN Qin, RUAN Xiaoli, XU Jing, LI Shaobo, HU Bingqi. Function Prediction of Therapeutic Peptides with Multi-coded Neural Networks Based on Projected Gradient Descent [J]. Computer Science, 2025, 52(6A): 240800024-6. |
| [14] | FAN Xing, ZHOU Xiaohang, ZHANG Ning. Review on Methods and Applications of Short Text Similarity Measurement in Social Media Platforms [J]. Computer Science, 2025, 52(6A): 240400206-8. |
| [15] | YANG Jixiang, JIANG Huiping, WANG Sen, MA Xuan. Research Progress and Challenges in Forest Fire Risk Prediction [J]. Computer Science, 2025, 52(6A): 240400177-8. |
|
||