Computer Science ›› 2025, Vol. 52 ›› Issue (11A): 250400085-7.doi: 10.11896/jsjkx.250400085
• Information Security • Previous Articles Next Articles
LYU Shuqi1, ZHANG Yunfeng2
CLC Number:
| [1]HILAL W,ANDREW S,GADSDEN,et al.Financial Fraud:A Review of Anomaly Detection Techniques and Recent Advances[J].Expert Systems with Applications,2022,193:1. [2]KAIDI L,TIANMENG Y,MIN Z,et al.SEFraud:Graph-based Self-Explainable Fraud Detection via Interpretative Mask Lear-ning[C]//Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining(KDD’24).Association for Computing Machinery,New York,NY,USA,2024:5329-5338. [3]KOKKINAKI A I.On atypical database transactions:identification of probable frauds using machine learning for user profiling[C]//Proceedings 1997 IEEE Knowledge and Data Engineering Exchange Workshop.IEEE,1997:107-113. [4]AGARWAL A,BARHAM P,BREVDO E,et al.Ten-sorflow:A system for large-scale machine learning[C]//Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation.USENIX Association,2016. [5]KHEMANI B,PATIL S,KOTECHA K T S.A review of graph neural networks:concepts,architectures,techniques,challenges,datasets,applications,and future directions[J].Journal of Big Data,2024,11(1). [6]WANG X,BO D,SHI C,et al.A Survey on HeterogeneousGraph Embedding:Methods,Techniques,Applications and Sources[J].IEEE Transactions on Big Data,2023,9(2):415-436. [7]WU Z,PAN S,CHEN F,et al.A Comprehensive Survey onGraph Neural Networks[J].IEEE Transactions on Neural Networks and Learning Systems,2021,32(1):4-24. [8]ZHANG M,HE T T,DONG M.Meta-path reasoning of knowledge graph for commonsense question answering[J].Frontiers of Computer Science,2024,18(1):181303. [9]DONG Y,CHAWLA N V,SWAMI A.metapath2vec:Scalable representation learning for heterogeneous networks[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2017:135-144. [10]FU X,ZHANG J,MENG Z,et al.Magnn:Metapath aggregated graph neural network for heterogeneous graph embedding[C]//Proceedings of The Web Conference 2020.2020:2331-2341. [11]ZHANG Y,KONG X,SHEN Z,et al.A survey on temporalknowledge graph embedding:Models and applications[J].Knowledge-Based Systems,2024,304. [12]GUANGSHANG G.Review of Research on Neural NetworkCombined with Attention Mechanism in Recommendation System[J].Journal of Computer Engineering & Applications,2024,60(10). [13]WANG X,JI H,SHI C,et al.Heterogeneous graph attention network[C]//The World Wide Web Conference.2019:2022-2032. [14]HU B,ZHANG Z,SHI C,et al.Cash-out user detection based on attributed heterogeneous information network with a hierarchical attention mechanism[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2019:946-953. [15]FU X,ZHANG J,MENG Z,et al.MAGNN:Metapath Aggregated Graph Neural Network for Heterogeneous Graph Embedding[C]//Proceedings of the Web Conference 2020.2020:2331-2341. [16]CHENG D,ZOU Y,XIANG S,et al.Graph neural networks for financial fraud detection:a review[J].Frontiers of Computers Science,2025,19(9):199609. [17]KHODABANDEHLOU S,GOLPAYEGANI A H.FiFrauD:Unsupervised Financial Fraud Detection in Dynamic Graph Streams[J].ACM Transactions on Knowledge Discovery from Data,2024,18(5):29. [18]WANG D,LIN J,CUI P,et al.A Semi-supervised Graph Attentive Network for Financial Fraud Detection[C]//ICDM.IEEE,2019:598-607. [19]LIU Z,CHEN C,LI L,et al.GeniePath:Graph Neural Networks with Adaptive Receptive Paths[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2018. [20]LIU Z,CHEEN C,YANG X,et al.Heterogeneous Graph Neural Networks for Malicious Account Detection[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management.2018:2077-2085. [21]WANG J,WEN R,WU C,et al.FdGars:Fraudster Detection via Graph Convolutional Networks in Online App Review System[C]//Companion The 2019 World Wide Web Conference.2019. [22]LI A,QIN Z,LIU R,et al.Spam review detection with graphconvolutional networks[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management.2019:2703-2711. [23]ZHANGY,FAN Y,YE Y,et al.Key player identification in underground forums over attributed heterogeneous information network embedding framework[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management.2019:549-558. [24]SHI C,HU B,ZHAO W X,et al.Heterogeneous information network embedding for recommendation[J].IEEE Transactions on Knowledge and Data Engineering,2018,31(2):357-370. [25]BORDES A,USUNIER N,GARCIA-DURAN A,et al.Translating embeddings for modeling multi-relational data[J].Advances in Neural Information Processing Systems,2013,26. [26]WANG Z,ZHANG J,FENG J,et al.Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2014. [27]LIN Y,LIU Z,SUN M,et al.Learning entity and relation embeddings for knowledge graph completion[C]//Twenty-ninth AAAI Conference on Artificial Intelligence.2015. [28]NICKEL M,TRESP V,KRIEGEL H P.A three-way model for collective learning on multi-relational data[C]//ICML.2011. [29]YANG B,YI H W,HE X,et al.Embedding entities and relations for learning and inference in knowledge bases[J].arXiv:1412.6575,2014. [30]DETTMERS T,MINERXINI P,STENETORP P,et al.Convolutional 2d knowledge graph embeddings[C]//Thirty-second AAAI Conference on Artificial Intelligence.2018. [31]VU T,NGUYEN T D,NGUYEN D Q,et al.A capsule network-based embedding model for knowledge graph completion and search personalization[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies,Volume 1(Long and Short Papers).2019:2180-2189. [32]SUN Z,DENG Z H,NIE J Y,et al.Rotate:Knowledge graph embedding by relational rotation in complex space[J].arXiv:1902.10197,2019. [33]ZHANG S,TAY Y,YAO L,et al.Quaternion knowledge graph embeddings[J].arXiv:1904.10281,2019. [34]XU C,LI R.Relation embedding with dihedral group in knowledge graph[J].arXiv:1906.00687,2019. [35]TROUILLON T,WELLBL J,RIEDEL S,et al.Complex embeddings for simple link prediction[C]//International Confe-rence on Machine Learning.PMLR,2016:2071-2080. |
| [1] | LI Yaru, WANG Qianqian, CHE Chao, ZHU Deheng. Graph-based Compound-Protein Interaction Prediction with Drug Substructures and Protein 3D Information [J]. Computer Science, 2025, 52(9): 71-79. |
| [2] | WU Hanyu, LIU Tianci, JIAO Tuocheng, CHE Chao. DHMP:Dynamic Hypergraph-enhanced Medication-aware Model for Temporal Health EventPrediction [J]. Computer Science, 2025, 52(9): 88-95. |
| [3] | SU Shiyu, YU Jiong, LI Shu, JIU Shicheng. Cross-domain Graph Anomaly Detection Via Dual Classification and Reconstruction [J]. Computer Science, 2025, 52(8): 374-384. |
| [4] | TANG Boyuan, LI Qi. Review on Application of Spatial-Temporal Graph Neural Network in PM2.5 ConcentrationForecasting [J]. Computer Science, 2025, 52(8): 71-85. |
| [5] | GUO Husheng, ZHANG Xufei, SUN Yujie, WANG Wenjian. Continuously Evolution Streaming Graph Neural Network [J]. Computer Science, 2025, 52(8): 118-126. |
| [6] | JIANG Kun, ZHAO Zhengpeng, PU Yuanyuan, HUANG Jian, GU Jinjing, XU Dan. Cross-modal Hypergraph Optimisation Learning for Multimodal Sentiment Analysis [J]. Computer Science, 2025, 52(7): 210-217. |
| [7] | LUO Xuyang, TAN Zhiyi. Knowledge-aware Graph Refinement Network for Recommendation [J]. Computer Science, 2025, 52(7): 103-109. |
| [8] | HAO Jiahui, WAN Yuan, ZHANG Yuhang. Research on Node Learning of Graph Neural Networks Fusing Positional and StructuralInformation [J]. Computer Science, 2025, 52(7): 110-118. |
| [9] | ZHENG Chuangrui, DENG Xiuqin, CHEN Lei. Traffic Prediction Model Based on Decoupled Adaptive Dynamic Graph Convolution [J]. Computer Science, 2025, 52(6A): 240400149-8. |
| [10] | TENG Minjun, SUN Tengzhong, LI Yanchen, CHEN Yuan, SONG Mofei. Internet Application User Profiling Analysis Based on Selection State Space Graph Neural Network [J]. Computer Science, 2025, 52(6A): 240900060-8. |
| [11] | SHI Enyi, CHANG Shuyu, CHEN Kejia, ZHANG Yang, HUANG Haiping. BiGCN-TL:Bipartite Graph Convolutional Neural Network Transformer Localization Model for Software Bug Partial Localization Scenarios [J]. Computer Science, 2025, 52(6A): 250200086-11. |
| [12] | QIAO Yu, XU Tao, ZHANG Ya, WEN Fengpeng, LI Qiangwei. Graph Neural Network Defect Prediction Method Combined with Developer Dependencies [J]. Computer Science, 2025, 52(6): 52-57. |
| [13] | WANG Jinghong, WU Zhibing, WANG Xizhao, LI Haokang. Semantic-aware Heterogeneous Graph Attention Network Based on Multi-view RepresentationLearning [J]. Computer Science, 2025, 52(6): 167-178. |
| [14] | WU Pengyuan, FANG Wei. Study on Graph Collaborative Filtering Model Based on FeatureNet Contrastive Learning [J]. Computer Science, 2025, 52(5): 139-148. |
| [15] | HUANG Qian, SU Xinkai, LI Chang, WU Yirui. Hypergraph Convolutional Network with Multi-perspective Topology Refinement forSkeleton-based Action Recognition [J]. Computer Science, 2025, 52(5): 220-226. |
|
||