Computer Science ›› 2025, Vol. 52 ›› Issue (11A): 241000041-6.doi: 10.11896/jsjkx.241000041
• Artificial Intelligence • Previous Articles Next Articles
HUANG Haixin1, XU Chenglong1, FU Yao2
CLC Number:
| [1]FRANTAR E,ALISTARH D.Sparsegpt:Massive languagemodels can be accurately pruned in one-shot[C]//International Conference on Machine Learning.PMLR,2023:10323-10337. [2]SUN M,LIU Z,BAI R A,et al.A simple and effective pruning approach for large language models[J].arXiv:2306.11695,2023. [3]MA X,FANG G,WANG X.Llm-pruner:On the structuralpruning of large language models[J].Advances in Neural Information Processing Systems,2023,36:21702-21720. [4]KIM B K,KIM G,KIM T H,et al.Shortened llama:A simple depth pruning for large language models[J].arXiv:2402.02834,2024. [5]ZHU X P,YAO H D,LIU J,et al.Review of Evolution of Large Language Model Algorithms[J].ZTE Technology Journal,2024,30(2):9-20. [6]FANG G,MA X,SONG M,et al.Depgraph:Towards any structural pruning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2023:16091-16101. [7]MOLCHANOV P,MALLYA A,TYREE S,et al.Importance estimation for neural network pruning[C]//CVPR.2019. [8]DETTMERS T,LEWIS M,BELKADA Y,et al.LLM.int8():8-bit matrix multiplication for transformersat scale[J].arXiv:2208.07339,2022. [9]LI H,KADAV A,DURDANOVIC I,et al.Pruning filters for efficient convnets[C]//ICLR.2017. [10]HU E J,SHEN Y,WALLIS P,et al.Lora:Low-rank adaptation of large language models[J].arXiv:2106.09685,2021. [11]HE T W,WANG H.Evaluating Perplexity of Chinese Sentences Based on Grammar & Semantics Analysis[J].ApplicationResearch of Computers,2017,34(12):3538-3542,3546. [12]KIM B K,KIM G,KIM T H,et al.Shortened llama:A simple depth pruning for large language models[J].arXiv:2402.02834,2024. [13]ZHU Y K,KIROS R,ZEMEL R,et al.Aligning books and movies:Towards story-like visual explanations by watching movies and reading books[C]//ICCV.2015. [14]TAORI R,GULRAJANI I,ZHANG T Y,et al.Stanford alpa-ca:An instruction-following llama model[EB/OL].https://github.com/tatsu-lab/stanford_alpaca. [15]TOUVRON H,MARTIN L,STONE K,et al.Llama 2:Openfoundation and fine-tuned chat models[J].arXiv:2307.09288,2023. [16]CHIANG W L,LI Z,LIN Z,et al.Vicuna:An open-source chatbot impressing gpt-4 with 90%* chatgpt quality[J].See https://vicuna.lmsys.org(accessed 14 April 2023),2023,2(3):6. [17]SUN M J,LIU Z,BAIR A,et al.A simple and effective pruning approach for large language models[C]//ICLR.2024. [18]AN Y,ZHAO X,YU T,et al.Fluctuation-based adaptive structured pruning for large language models[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2024:10865-10873. [19]LV B,ZHOU Q,DING X,et al.KVPruner:Structural Pruning for Faster and Memory-Efficient Large Language Models[J].arXiv:2409.11057,2024. [20]CHENG H,ZHANG M,SHI J Q.MINI-LLM:Memory-Efficient Structured Pruning for Large Language Models[J].arXiv:2407.11681,2024. |
| [1] | LI Maolin, LIN Jiajie, YANG Zhenguo. Confidence-guided Prompt Learning for Multimodal Aspect-level Sentiment Analysis [J]. Computer Science, 2025, 52(7): 241-247. |
| [2] | CHEN Jinyin, XI Changkun, ZHENG Haibin, GAO Ming, ZHANG Tianxin. Survey of Security Research on Multimodal Large Language Models [J]. Computer Science, 2025, 52(7): 315-341. |
| [3] | LI Bo, MO Xian. Application of Large Language Models in Recommendation System [J]. Computer Science, 2025, 52(6A): 240400097-7. |
| [4] | HU Caishun. Study on Named Entity Recognition Algorithms in Audit Domain Based on Large LanguageModels [J]. Computer Science, 2025, 52(6A): 240700190-4. |
| [5] | WU Zhihua, CHENG Jianghua, LIU Tong, CAI Yahui, CHENG Bang, PAN Lehao. Human Target Detection Algorithm for Low-quality Laser Through-window Imaging [J]. Computer Science, 2025, 52(6A): 240600069-6. |
| [6] | GAO Hongkui, MA Ruixiang, BAO Qihao, XIA Shaojie, QU Chongxiao. Research on Hybrid Retrieval-augmented Dual-tower Model [J]. Computer Science, 2025, 52(6): 324-329. |
| [7] | PANG Mingyi, WEI Xianglin, ZHANG Yunxiang, WANG Bin, ZHUANG Jianjun. Efficient Adaptive CNN Accelerator for Resource-limited Chips [J]. Computer Science, 2025, 52(4): 94-100. |
| [8] | WANG Hao, CAI Yuhang, CHEN Guojie, WANG Lu. Study on MAC Protocol of LoRa Network Hidden Terminal Based on BTMA [J]. Computer Science, 2025, 52(3): 318-325. |
| [9] | GUO Liwei, WU Yonghao, LIU Yong. Semantic Variations Based Defect Generation and Prediction Model Testing [J]. Computer Science, 2025, 52(11A): 241200059-7. |
| [10] | PAN Jie, WANG Juan, WANG Nan. Large Language Models and Rumors:A Survey on Generation and Detection [J]. Computer Science, 2025, 52(11): 1-12. |
| [11] | FANG Quan, ZHANG Jinlong, WANG Bingqian, HU Jun. Research on Domain Knowledge Question Answering via Large Language Models withCompositional Context Prompting [J]. Computer Science, 2025, 52(11): 13-21. |
| [12] | ZHANG Haoran, HAO Wenning, JIN Dawei, CHENG Kai, ZHAI Ying. DF-RAG:A Retrieval-augmented Generation Method Based on Query Rewriting and Knowledge Selection [J]. Computer Science, 2025, 52(11): 30-39. |
| [13] | ZHOU Yuchen, LI Peng, HAN Keji. Instruct-Malware:Control Flow Graph Based Large Language Model Analysis of Malware [J]. Computer Science, 2025, 52(11): 40-48. |
| [14] | CHEN Yuyan, JIA Jiyuan, CHANG Jingwen, ZUO Kaiwen, XIAO Yanghua. SPEAKSMART:Evaluating Empathetic Persuasive Responses by Large Language Models [J]. Computer Science, 2025, 52(10): 217-230. |
| [15] | DUN Jingbo, LI Zhuo. Survey on Transmission Optimization Technologies for Federated Large Language Model Training [J]. Computer Science, 2025, 52(1): 42-55. |
|
||