Computer Science ›› 2025, Vol. 52 ›› Issue (6A): 240900126-7.doi: 10.11896/jsjkx.240900126
• Image Processing & Multimedia Technology • Previous Articles Next Articles
ZHANG Hang1, WEI Shoulin2, YIN Jibin2
CLC Number:
[1]LI A,HU A,XI W,et al.Stereo-LiDAR Depth Estimation with Deformable Propagation and Learned Disparity-Depth Conversion[J].arXiv:2404.07545,2024. [2]LI T,HU T,WU D D.Monocular depth estimation combining pyramid structure and attention mechanism[J].Journal of Graphics,2024,45(3):454. [3]LI Y,SU J,LIU L,et al.Object Detection Based on the Fusion of Sparse LiDAR Point Cloud and Dense Stereo Pseudo Point Cloud[C]//2024 4th International Conference on Neural Networks,Information and Communication(NNICE).IEEE,2024:860-863. [4]NGUYEN H C,WANG T,ALVAREZ J M,et al.Mining Supervision for Dynamic Regions in Self-Supervised Monocular Depth Estimation[C]//Proceedings of the IEEE/CVF Confe-rence on Computer Vision and Pattern Recognition.2024:10446-10455. [5]SAUNDERS K,VOGIATZIS G,MANSO L J.Self-supervised Monocular Depth Estimation:Let’s Talk About The Weather[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2023:8907-8917. [6]LIN X,LI N.Self-supervised learning monocular depth estimation from internet photos[J].Journal of Visual Communication and Image Representation,2024,99:104063. [7]LIU L,SONG X,WANG M,et al.Self-supervised monocular depth estimation for all day images using domain separation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:12737-12746. [8]HE K,ZHANG X,REN S,et al.Deep residual learning forimage recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [9]GODARD C,MAC AODHA O,FIRMAN M,et al.Digging into self-supervisedmonocular depth estimation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2019:3828-3838. [10]RANJAN A,JAMPANI V,BALLESL,et al.Competitive col-laboration:Joint unsupervised learning of depth,camera motion,optical flow and motion segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:12240-12249. [11]LEE S,RAMEAU F,PAN F,et al.Attentive and contrastivelearning for joint depth and motion field estimation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:4862-4871. [12]FENG Z,YANG L,JING L,et al.Disentangling object motion and occlusion for unsupervised multi-frame monocular depth[C]//European Conference on Computer Vision. [13]LI H,GORDON A,ZHAO H,et al.Unsupervised monoculardepth learning in dynamic scenes[C]//Conference on Robot Learning.PMLR,2021:1908-1917. [14]HUI T W.Rm-depth:Unsupervised learning of recurrent mo-nocular depth in dynamic scenes[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:1675-1684. [15]DOSOVITSKIY A,FISCHER P,ILG E,et al.Flownet:Learning optical flow with convolutional networks[C]//Proceedings of the IEEE International Conference on Computer Vision.2015:2758-2766. [16]ZOU Y,LUO Z,HUANG J B.Df-net:Unsupervised joint learning of depth and flow using cross-task consistency[C]//Proceedings of the European Conference on Computer Vision(ECCV).2018:36-53. [17]VANK A M,GARG S,MAJUMDER A,et al.Unsupervisedmonocular depth estimation for night-time images using adversarial domain feature adaptation[C]//Computer Vision-ECCV 2020:16th European Conference,Glasgow,UK,Part XXVIII 16.Springer International Publishing,2020:443-459. [18]GASPERINI S,MORBITZER N,JUNGH J,et al.Robust monocular depth estimation under challenging conditions[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2023:8177-8186. [19]WANG Z,BOVIK A C,SHEIKHH R,et al.Image quality assessment:from error visibility to structural similarity[J].IEEE Transactions on Image Processing,2004,13(4):600-612. [20]ZHOU T,BROWN M,SNAVELY N,et al.Unsupervised learning of depth and ego-motion from video[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:1851-1858. [21]GASPERINI S,KOCH P,DALLABETTAV,et al.R4Dyn:Exploring radar for self-supervised monocular depth estimation of dynamic scenes[C]//2021 International Conference on 3D Vision(3DV).IEEE,2021:751-760. [22]PITROPOV M,GARCIA D E,REBELLO J,et al.Canadian adverse driving conditions dataset[J].The International Journal of Robotics Research,2021,40(4/5):681-690. [23]SAKARIDIS C,DAI D,VAN GOOLL.ACDC:The adverse conditions dataset with correspondences for semantic driving scene understanding[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:10765-10775. [24]ZHU J Y,PARK T,ISOLA P,et al.Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the IEEE International Conference on Computer Vision.2017:2223-2232. [25]WANG K,ZHANG Z,YAN Z,et al.Regularizing nighttimeweirdness:Efficient self-supervised monocular depth estimation in the dark[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:16055-16064. [26]WEI X,YE X,MEI X,et al.Enforcing high frequency enhancement in deep networks for simultaneous depth estimation and dehazing[J].Applied Soft Computing,2024,163:111873. [27]ZHAO C,ZHANG Y,POGGI M,et al.Monovit:Self-supervised monocular depth estimation with a vision transformer[C]//2022 International Conference on 3D Vision(3DV).IEEE,2022:668-678. [28]ZHOU H,GREENWOOD D,TAYLOR S.Self-supervised mo-nocular depth estimation with internal feature fusion[J].arXiv:2110.09482,2021. |
[1] | ZHOU Lei, SHI Huaifeng, YANG Kai, WANG Rui, LIU Chaofan. Intelligent Prediction of Network Traffic Based on Large Language Model [J]. Computer Science, 2025, 52(6A): 241100058-7. |
[2] | WANG Yicheng, NING Tai, LIU Xinyu, LUO Ye. Position-aware Based Multi-modality Lung Cancer Survival Prediction Method [J]. Computer Science, 2025, 52(6A): 240500089-8. |
[3] | GUAN Xin, YANG Xueyong, YANG Xiaolin, MENG Xiangfu. Tumor Mutation Prediction Model of Lung Adenocarcinoma Based on Pathological [J]. Computer Science, 2025, 52(6A): 240700010-8. |
[4] | TAN Jiahui, WEN Chenyan, HUANG Wei, HU Kai. CT Image Segmentation of Intracranial Hemorrhage Based on ESC-TransUNet Network [J]. Computer Science, 2025, 52(6A): 240700030-9. |
[5] | RAN Qin, RUAN Xiaoli, XU Jing, LI Shaobo, HU Bingqi. Function Prediction of Therapeutic Peptides with Multi-coded Neural Networks Based on Projected Gradient Descent [J]. Computer Science, 2025, 52(6A): 240800024-6. |
[6] | FAN Xing, ZHOU Xiaohang, ZHANG Ning. Review on Methods and Applications of Short Text Similarity Measurement in Social Media Platforms [J]. Computer Science, 2025, 52(6A): 240400206-8. |
[7] | YANG Jixiang, JIANG Huiping, WANG Sen, MA Xuan. Research Progress and Challenges in Forest Fire Risk Prediction [J]. Computer Science, 2025, 52(6A): 240400177-8. |
[8] | WANG Chanfei, YANG Jing, XU Yamei, HE Jiai. OFDM Index Modulation Signal Detection Based on Deep Learning [J]. Computer Science, 2025, 52(6A): 240900122-6. |
[9] | ZOU Ling, ZHU Lei, DENG Yangjun, ZHANG Hongyan. Source Recording Device Verification Forensics of Digital Speech Based on End-to-End DeepLearning [J]. Computer Science, 2025, 52(6A): 240800028-7. |
[10] | WANG Jiamin, WU Wenhong, NIU Hengmao, SHI Bao, WU Nier, HAO Xu, ZHANG Chao, FU Rongsheng. Review of Concrete Defect Detection Methods Based on Deep Learning [J]. Computer Science, 2025, 52(6A): 240900137-12. |
[11] | HAO Xu, WU Wenhong, NIU Hengmao, SHI Bao, WU Nier, WANG Jiamin, CHU Hongkun. Survey of Man-Machine Distance Detection Method in Construction Site [J]. Computer Science, 2025, 52(6A): 240700098-10. |
[12] | CHEN Shijia, YE Jianyuan, GONG Xuan, ZENG Kang, NI Pengcheng. Aircraft Landing Gear Safety Pin Detection Algorithm Based on Improved YOlOv5s [J]. Computer Science, 2025, 52(6A): 240400189-7. |
[13] | GAO Junyi, ZHANG Wei, LI Zelin. YOLO-BFEPS:Efficient Attention-enhanced Cross-scale YOLOv10 Fire Detection Model [J]. Computer Science, 2025, 52(6A): 240800134-9. |
[14] | HUANG Hong, SU Han, MIN Peng. Small Target Detection Algorithm in UAV Images Integrating Multi-scale Features [J]. Computer Science, 2025, 52(6A): 240700097-5. |
[15] | WANG Baohui, GAO Zhan, XU Lin, TAN Yingjie. Research and Implementation of Mine Gas Concentration Prediction Algorithm Based on Deep Learning [J]. Computer Science, 2025, 52(6A): 240400188-7. |
|