Computer Science ›› 2025, Vol. 52 ›› Issue (8): 29-44.doi: 10.11896/jsjkx.250100062
• Software Engineering • Previous Articles Next Articles
LIU Zhengyu1,2, ZHANG Fan1, QI Xiaofeng1, GAO Yanzhao1, SONG Yijing3, FAN Wang3
CLC Number:
[1]ZHANG X,SUN N,FANG C,et al.Predoo:precision testing of deep learning operators[C]//Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis.2021:400-412. [2]SUN R Y.Optimization for Deep Learning:An Overview[J].Journal of the Operations Research Society of China,2020(3):1-46. [3]LI M,LIU Y,LIU X,et al.The Deep Learning Compiler:A Comprehensive Survey[J].IEEE Transactions on Parallel and Distributed Systems,2021,32(3):708-727. [4]WANG Y,XIE F.Extending Tensor Virtual Machine to Sup-port Deep-Learning Accelerators with Convolution Cores[C]//2022 26th International Conference on Engineering of Complex Computer Systems(ICECCS).2022:189-194. [5]LÜCKE M,STEUWER M,SMITH A.Integrating a functional pattern-based IR into MLIR[C]//Proceedings of the 30th ACM SIGPLAN International Conference on Compiler Construction.New York,NY,USA:Association for Computing Machinery,2021:12-22. [6]CHELINI L,DREBES A,ZINENKO O,et al.Progressive raising in multi-level IR[C]//Proceedings of the 2021 IEEE/ACM International Symposium on Code Generation and Optimization.Virtual Event,Republic of Korea:IEEE Press,2021:15-26. [7]PIZZUTI F,STEUWER M,DUBACH C.Generating fast sparse matrix vector multiplication from a high level generic functional IR[C]//Proceedings of the 29th International Conference on Compiler Construction.New York,NY,USA:Association for Computing Machinery,2020:85-95. [8]KLOPP D,ERDWEG S,PACAK A.A Typed Multi-level Datalog IR and Its Compiler Framework[C]//Proceedings of the ACM on Programming Languages.2024. [9]GROSSMAN A,PAEHLER L,PARASYRIS K,et al.Compile:A large ir dataset from production sources[J].arXiv:2309.15432,2023. [10]FEHR M,NIU J,RIDDLE R,et al.IRDL:an IR definition language for SSA compilers[C]//Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation.New York,NY,USA:Association for Computing Machinery,2022:199-212. [11]BHAT S,GROSSER T.Lambda the ultimate SSA:optimizing functional programs in SSA[C]//Proceedings of the 20th IEEE/ACM International Symposium on Code Generation and Optimization.Virtual Event,Republic of Korea:IEEE Press,2022:168-178. [12]LI M,LIU Y,CHEN B,et al.Building a domain-specific compi-ler for emerging processors with a reusable approach[J].SCIENCE CHINA Information Sciences,2023,67(1):112101.1-112101.19. [13]ZENG J,KOU M,YAO H.KunlunTVM:A Compilation Framework for Kunlun Chip Supporting Both Training and Inference[C]//Proceedings of the Great Lakes Symposium on VLSI 2022.New York,NY,USA:Association for Computing Ma-chinery,2022:299-304. [14]LONG G,YANG J,LIN W.FusionStitching:Boosting Execu-tion Efficiency of Memory Intensive Computations for DL Workloads[J].arXiv:1911.11576,2019. [15]LONG G,YANG J,ZHU K,et al.FusionStitching:Deep Fusion and Code Generation for Tensorflow Computations on GPUs[J].arXiv:1811.05213,2018. [16]SHEN L,ZHOU W H,WANG F,et al.swLLVM:An Optimizing Compiler for the New Generation of Sunway Supercompu-ters[J].Journal of Software,2024,35(5):2359-2378. [17]MAVROGEORGIS N,VASILADIOTIS C,MU P,et al.UNIFICO:Thread Migration in Heterogeneous-ISA CPUs without State Transformation[C]//Proceedings of the 33rd ACM SIGPLAN International Conference on Compiler Construction.New York,NY,USA:Association for Computing Machinery,2024:86-99. [18]CHATARASI P,NEUENDORFFER S,BAYLISS S,et al.Vyasa:A High-Performance Vectorizing Compiler for Tensor Convolutions on the Xilinx AI Engine[J].arXiv:2006.01331,2020. [19]LAVAEE R,CRISWELL J,DING C.Codestitcher:inter-procedural basic block layout optimization[C]//Proceedings of the 28th International Conference on Compiler Construction.New York,NY,USA:Association for Computing Machinery,2019:65-75. [20]LIU Y,WANG Y,YU R,et al.Optimizing CNN Model Infe-rence on CPUs[C]//2019 USENIX Annual Technical Confe-rence(USENIX ATC 19).2019:1025-1040. [21]ANDERSON A,GREGG D.Optimal DNN primitive selectionwith partitionedboolean quadratic programming[C]//Procee-dings of the 2018 International Symposium on Code Generation and Optimization.New York,NY,USA:Association for Computing Machinery,2018:340-351. [22]AHN B H,LEE J,LIN J M,et al.Ordering Chaos:Memory-Aware Scheduling of Irregularly Wired Neural Networks for Edge Devices[C]//Proceedings of Machine Learning and Systems.2020:44-57. [23]SHI Y,YANG Z,XUE J,et al.WELDER:Scheduling DeepLearning Memory Access via Tile-graph[C]//17th USENIX Symposium on Operating Systems Design and Implementation(OSDI'23).2023. [24]LIAO HH,LEE C L,LEE J K,et al.Support Convolution of CNN with Compression Sparse Matrix Multiplication Flow in TVM[C]//50th International Conference on Parallel Processing Workshop.New York,NY,USA:Association for Computing Machinery,2021:1-7. [25]JAIN A,BHATTACHARYA S,MASUDA M,et al.Efficient Execution of Quantized Deep Learning Models:A Compiler Approach[J].arXiv:2006.10226.2020. [26]GUAN H,SHEN X,LIM S H.Wootz:a compiler-based framework for fast CNN pruning via composability[C]//Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation.New York,NY,USA:Association for Computing Machinery,2019:717-730. [27]KJOLSTAD F,AHRENS W,KAMIL S,et al.Tensor Algebra Compilation with Workspaces[C]//2019 IEEE/ACM International Symposium on Code Generation and Optimization(CGO).2019:180-192. [28]MA Z,WANG H,XING J,et al.PowerFusion:A Tensor Compiler with Explicit Data Movement Description and Instruction-level Graph IR[J].arXiv:2307.04995,2023. [29]ZENG J,KOU M Y,ZHENG X Y,et al.TVM_T:A High-Performance Neural Network Training Compiler Based on TVM[J].Science China Information Sciences,2023,53(12):2458-2471. [30]RIVERA J,FRANCHETTI F,PÜSCHEL M.A compiler forsound floating-point computations using affine arithmetic[C]//Proceedings of the 20th IEEE/ACM International Symposium on Code Generation and Optimization.Virtual Event,Republic of Korea:IEEE Press,2022:66-78. [31]SOMMER L,AXENIE C,KOCH A.SPNC:an open-sourceMLIR-based compiler for fast sum-product network inference on CPUs and GPUs[C]//Proceedings of the 20th IEEE/ACM International Symposium on Code Generation and Optimization.Virtual Event,Republic of Korea:IEEE Press,2022:290-300. [32]THAKUR M,NANDIVADA V K.Compare less,defer more:scaling value-contexts based whole-program heap analyses[C]//Proceedings of the 28th International Conference on Compiler Construction.New York,NY,USA:Association for Computing Machinery,2019:135-146. [33]CHEN D,LIU F,DING C,et al.Locality analysis through static parallel sampling[C]//Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation.New York,NY,USA:Association for Computing Machi-nery,2018:557-570. [34]PENG C,LIU Q Z,CHEN C B.Loop Permutation and Auto-Tuning under the Polyhedral Model[J].Computer Engineering and Science,2023,45(12):2121-2134. [35]ROCHA R C O,PETOUMENOS P,FRANKE B,et al.Loop rolling for code size reduction[C]//Proceedings of the 20th IEEE/ACM International Symposium on Code Generation and Optimization.Virtual Event,Republic of Korea:IEEE Press,2022:217-229. [36]BEHROOZI A,PARK S,MAHLKE S.Loner:utilizing the CPU vectordatapath to process scalar integer data[C]//Proceedings of the 31st ACM SIGPLAN International Conference on Compiler Construction.New York,NY,USA:Association for Computing Machinery,2022:205-217. [37]ROCHA R C O,PORPODAS V,PETOUMENOS P,et al.Vectorization-aware loop unrolling with seed forwarding[C]//Proceedings of the 29th International Conference on Compiler Construction.New York,NY,USA:Association for Computing Machinery,2020:1-13. [38]HAJ-ALI A,AHMED N K,WILLKE T,et al.NeuroVectori-zer:end-to-end vectorization with deep reinforcement learning[C]//Proceedings of the 18th ACM/IEEE International Symposium on Code Generation and Optimization.New York,NY,USA:Association for Computing Machinery,2020:242-255. [39]ZHAO J,KRUSE M,COHEN A.A polyhedral compilationframework for loops with dynamic data-dependent bounds[C]//Proceedings of the 27th International Conference on Compiler Construction.New York,NY,USA:Association for Computing Machinery,2018:14-24. [40]SIOUTAS S,STUIJK S,CORPORAAL H,et al.Loop transformations leveraging hardware prefetching[C]//Proceedings of the 2018 International Symposium on Code Generation and Optimization.New York,NY,USA:Association for Computing Machinery,2018:254-264. [41]CHANDRASEKHAR A,CHEN G,CHEN P Y,et al.IGC:the open source Intel graphics compiler[C]//Proceedings of the 2019 IEEE/ACM International Symposium on Code Generation and Optimization.Washington,DC,USA:IEEE Press,2019:254-265. [42]FANG Y F,LI Y B,DONG E M,et al.Memory Access and Communication Fusion Compilation Optimization for the Sunway Many-Core Processor[J].Journal of Software,2024,35(6):1-20. [43]DAMANI S,BARUA P,SARKAR V.Memory access schedu-ling to reduce thread migrations[C]//Proceedings of the 31st ACM SIGPLAN International Conference on Compiler Construction.New York,NY,USA:Association for Computing Machinery,2022:144-155. [44]KOEPLINGER D,FELDMAN M,PRABHAKAR R,et al.Spatial:a language and compiler for application accelerators[C]//Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation.New York,NY,USA:Association for Computing Machinery,2018:296-311. [45]SILVA A FD,DE LIMA B N B,PEREIRA F M Q.Exploring the space of optimization sequences for code-size reduction:insights and tools[C]//Proceedings of the 30th ACM SIGPLAN International Conference on Compiler Construction.New York,NY,USA:Association for Computing Machinery,2021:47-58. [46]MA L,XIE Z,YANG Z,et al.RAMMER:Enabling HolisticDeep Learning Compiler Optimizations with rTasks[C]//Ope-rating Systems Design and Implementation.2020. [47]YANG H,LIU Q R,FAN W,et al.Research on AutomaticScheduling Optimization of Deep Learning Based on Feature Importance[J].Computer Science,2024,51(7):22-28. [48]RYU J,PARK E,SUNG H.One-shot tuner for deep learning compilers[C]//Proceedings of the 31st ACM SIGPLAN International Conference on Compiler Construction.New York,NY,USA:Association for Computing Machinery,2022:89-103. [49]HAN R,KIM H.Exponentially Expanding the Phase-Ordering Search Space via Dormant Information[C]//Proceedings of the 33rd ACM SIGPLAN International Conference on Compiler Construction.New York,NY,USA:Association for Computing Machinery,2024:250-261. [50]WANG H,TANG Z,ZHANG C,et al.Automating reinforcement learning architecture design for code optimization[C]//Proceedings of the 31st ACM SIGPLAN International Confe-rence on Compiler Construction.New York,NY,USA:Association for Computing Machinery,2022:129-143. [51]ZHANG H B,ZHOU X L,XING M J,et al.AutoConfig:AnAutomatic Configuration Mechanism for Deep Learning Compi-ler Optimization[J].Journal of Software,2024,35(6):2668-2686. [52]PARK S,LATIFI S,PARK Y,et al.SRTuner:effective compi-ler optimization customization by exposing synergistic relations[C]//Proceedings of the 20th IEEE/ACM International Symposium on Code Generation and Optimization.Virtual Event,Republic of Korea:IEEE Press,2022:118-130. [53]COWAN M,MOREAU T,CHEN T,et al.Automatic generation of high-performance quantized machine learning kernels[C]//Proceedings of the 18th ACM/IEEE International Symposium on Code Generation and Optimization.New York,NY,USA:Association for Computing Machinery,2020:305-316. [54]BASTOUL C,ZHANG Z,RAZANAJATO H,et al.Optimizing GPU deep learning operators with polyhedral scheduling constraint injection[C]//Proceedings of the 20th IEEE/ACM International Symposium on Code Generation and Optimization.Virtual Event,Republic of Korea:IEEE Press,2022:313-324. [55]RIVERA J,FRANCHETTI F,PÜSCHEL M.An interval compiler for sound floating-point computations[C]//Proceedings of the 2021 IEEE/ACM International Symposium on Code Generation and Optimization.Virtual Event,Republic of Korea:IEEE Press,2021:52-64. [56]ALIAS C,PLESCO A.Data-aware process networks[C]//Proceedings of the 30th ACM SIGPLAN International Conference on Compiler Construction.New York,NY,USA:Association for Computing Machinery,2021:1-11. [57]ZHAO J,LI B,NIE W,et al.AKG:automatic kernel generation for neural processing units using polyhedral transformations[C]//Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation.New York,NY,USA:Association for Computing Machinery,2021:1233-1248. [58]BAGHDADI R,RAY J,ROMDHANE M B,et al.Tiramisu:a polyhedral compiler for expressing fast and portable code[C]//Proceedings of the 2019 IEEE/ACM International Symposium on Code Generation and Optimization.Washington,DC,USA:IEEE Press,2019:193-205. [59]DOERFERT J,SHARMA S,HACK S.Polyhedral expressionpropagation[C]//Proceedings of the 27th International Confe-rence on Compiler Construction.New York,NY,USA:Association for Computing Machinery,2018:25-36. [60]ACHARYA A,BONDHUGULA U,COHEN A.Polyhedral auto-transformation with no integer linear programming[C]//Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation.New York,NY,USA:Association for Computing Machinery,2018:529-542. [61]KRUSE M,GROSSER T.DeLICM:scalar dependence removal at zero memory cost[C]//Proceedings of the 2018 International Symposium on Code Generation and Optimization.New York,NY,USA:Association for Computing Machinery,2018:241-253. [62]KROLIK A,VERBRUGGE C,HENDREN L.r3d3:optimizedquery compilation on GPUs[C]//Proceedings of the 2021 IEEE/ACM International Symposium on Code Generation and Optimization.Virtual Event,Republic of Korea:IEEE Press,2021:277-288. [63]PROKOPEC A,DUBOSCQ G,LEOPOLDSEDER D,et al.An optimization-driven incremental inline substitution algorithm for just-in-time compilers[C]//Proceedings of the 2019 IEEE/ACM International Symposium on Code Generation and Optimization.Washington,DC,USA:IEEE Press,2019:164-179. [64]OTTONI G.HHVM JIT:a profile-guided,region-based compi-ler for PHP and Hack[C]//Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation.New York,NY,USA:Association for Computing Machinery,2018:151-165. [65]BROCK J,DING C,XU X,et al.PAYJIT:space-optimal JITcompilation and its practical implementation[C]//Proceedings of the 27th International Conference on Compiler Construction.New York,NY,USA:Association for Computing Machinery,2018:71-81. [66]LEOPOLDSEDER D,STADLER L,WÜRTHINGER T,et al.Dominance-based duplication simulation(DBDS):code duplication to enable compiler optimizations[C]//Proceedings of the 2018 International Symposium on Code Generation and Optimization.New York,NY,USA:Association for Computing Machinery,2018:126-137. [67]ZHU H,WU R,DIAO Y,et al.Roller:Fast and Efficient Tensor Compilation for Deep Learning[C]//The 16th USENIX Symposium on Operating Systems Design and Implementation(OSDI'22).2022. [68]QIAO B,REICHE O,HANNIG F,et al.From loop fusion tokernel fusion:a domain-specific approach to locality optimization[C]//Proceedings of the 2019 IEEE/ACM International Symposium on Code Generation and Optimization.Washington,DC,USA:IEEE Press,2019:242-253. [69]KURTH A,WOLTERS K,FORSBERG B,et al.Mixed-data-model heterogeneous compilation and OpenMP offloading[C]//Proceedings of the 29th International Conference on Compiler Construction.New York,NY,USA:Association for Computing Machinery,2020:119-131. [70]LIU Y,HUANG L,WU M,et al.PPOpenCL:a performance-portable OpenCL compiler with host and kernel thread code fusion[C]//Proceedings of the 28th International Conference on Compiler Construction.New York,NY,USA:Association for Computing Machinery,2019:2-16. [71]LI Y B,ZHAO R C,HAN L,et al.A Parallel CompilationFramework for Heterogeneous Many-Core Processors[J].Journal of Software,2019,30(4):981-1001. [72]KIM C,JEONG S,CHO S,et al.Thread-aware area-efficienthigh-level synthesis compiler for embedded devices[C]//Proceedings of the 2021 IEEE/ACM International Symposium on Code Generation and Optimization.Virtual Event,Republic of Korea:IEEE Press,2021:327-339. [73]BAGHSORKHI S S,MARGIOLAS C.Automating efficient variable-grained resiliency for low-power IoT systems[C]//Proceedings of the 2018 International Symposium on Code Generation and Optimization.New York,NY,USA:Association for Computing Machinery,2018:38-49. [74]HU P,LU M,WANG L,et al.TPU-MLIR:A Compiler ForTPU Using MLIR[J].arXiv:2210.15016,2022. [75]ESSADKI M,MICHEL B,MAUGARS B,et al.Code Generation for In-Place Stencils[C]//Proceedings of the 21st ACM/IEEE International Symposium on Code Generation and Optimization.New York,NY,USA:Association for Computing Machinery,2023:2-13. [76]ZHENG L,LI Z,ZHANG H,et al.Alpa:Automating Inter- and {Intra-Operator} Parallelism for Distributed Deep Learning[C]//16th USENIX Symposium on Operating Systems Design and Implementation(OSDI 22).2022:559-578. [77]ZHANG C,MA L,XUE J,et al.COCKTAILER:Analyzing and Optimizing Dynamic Control Flow in Deep Learning[C]//17th USENIX Symposium on Operating Systems Design and Implementation(OSDI'23).2023. [78]NARDI L,KOEPLINGER D,OLUKOTUN K.Practical Design Space Exploration[C]//2019 IEEE 27th International Sympo-sium on Modeling,Analysis,and Simulation of Computer and Telecommunication Systems(MASCOTS).2019:347-358. [79]ROTEM N,FIX J,ABDULRASOOL S,et al.Glow:GraphLowering Compiler Techniques for Neural Networks[J].ar-Xiv:1805.00907,2018. [80]CHEN T,MOREAU T,JIANG Z,et al.TVM:An automatedEnd-to-End optimizing compiler for deep learning[C]//13th USENIX Symposium on Operating Systems Design and Implementation(OSDI'18).2018:578-594. [81]RAGAN-KELLEY J,BARNES C,ADAMS A,et al.Halide:a language and compiler for optimizing parallelism,locality,and recomputation in image processing pipelines[J].ACM SIGPLAN Notices,2013,48(6):519-530. [82]LATTNER C,AMINI M,BONDHUGULA U,et al.MLIR:A Compiler Infrastructure for the End of Moore's Law[J].arXiv:2002.11054,2020. [83]VASILACHE N,ZINENKO O,THEODORIDIS T,et al.Tensor Comprehensions:Framework-Agnostic High-Performance Machine Learning Abstractions[J].arXiv:1802.04730,2018. [84]ROESCH J,LYUBOMIRSKY S,KIRISAME M,et al.Relay:A High-Level Compiler for Deep Learning[J].arXiv:1904.08368,2019. [85]ZHENG L,JIA C,SUN M,et al.Ansor:Generating {High-Performance} Tensor Programs for Deep Learning[C]//14th USENIX Symposium on Operating Systems Design and Implementation(OSDI 20).2020:863-879. [86]FEAUTRIER P.Some efficient solutions to the affine scheduling problem.Part II.Multidimensional time | International Journal of Parallel Programming[EB/OL].[2024-05-26].https://springer.longhoe.net/article/10.1007/BF01379404. [87]FEAUTRIER P.Some efficient solutions to the affine scheduling problem.I.One-dimensional time[J].International Journal of Parallel Programming,1992,21(5):313-347. [88]LIM A W,LAM M S.Maximizing parallelism and minimizing synchronization with affine transforms[C]//Proceedings of the 24th ACM SIGPLAN-SIGACT symposium on Principles of programming languages.New York,NY,USA:Association for Computing Machinery,1997:201-214. [89]LIM A W,CHEONG G I,LAM M S.An affine partitioning algorithm to maximize parallelism and minimize communication[C]//Proceedings of the 13th International Conference on Supercomputing.Rhodes Greece:ACM,1999:228-237. [90]BONDHUGULA U,BASKARAN M,KRISHNAMOORTHYS,et al.Automatic Transformations for Communication-Minimized Parallelization and Locality Optimization in the Polyhedral Model[C]//Compiler Construction.Berlin:Springer,2008:132-146. [91]ZHANG C,DONG R,WANG H,et al.MAGPY:compiling eager mode DNN programs by monitoring execution states[C]//Proceedings of the 2024 USENIX Conference on Usenix Annual Technical Conference.2024:683-698. [92]SHIN Y,PARK J,CHO S,et al.PIMFlow:Compiler and Runtime Support for CNN Models on Processing-in-Memory DRAM[C]//Proceedings of the 21st ACM/IEEE International Symposium on Code Generation and Optimization.New York,NY,USA:Association for Computing Machinery,2023:249-262. [93]CASTRO-LOPEZ O,VEGA-LOPEZ I F.Multi-target compiler for the deployment of machine learning models[C]//Procee-dings of the 2019 IEEE/ACM International Symposium on Code Generation and Optimization.Washington,DC,USA:IEEE Press,2019:280-281. [94]GUO D,YANG D,ZHANG H,et al.Deepseek-r1:Incentivizing reasoning capability in llms via reinforcement learning[J].ar-Xiv:2501.12948,2025. |
[1] | TANG Boyuan, LI Qi. Review on Application of Spatial-Temporal Graph Neural Network in PM2.5 ConcentrationForecasting [J]. Computer Science, 2025, 52(8): 71-85. |
[2] | ZHENG Cheng, YANG Nan. Aspect-based Sentiment Analysis Based on Syntax,Semantics and Affective Knowledge [J]. Computer Science, 2025, 52(7): 218-225. |
[3] | LIU Mengzhen, ZHOU Qinglei, HAN Lin, NIE Kai, LI Haoran, CHEN Mengyao, LIU Haohao. Research on Automatic Vectorization Benefit Evaluation Model Based on Particle SwarmAlgorithm [J]. Computer Science, 2025, 52(7): 248-254. |
[4] | ZHOU Lei, SHI Huaifeng, YANG Kai, WANG Rui, LIU Chaofan. Intelligent Prediction of Network Traffic Based on Large Language Model [J]. Computer Science, 2025, 52(6A): 241100058-7. |
[5] | GUAN Xin, YANG Xueyong, YANG Xiaolin, MENG Xiangfu. Tumor Mutation Prediction Model of Lung Adenocarcinoma Based on Pathological [J]. Computer Science, 2025, 52(6A): 240700010-8. |
[6] | TAN Jiahui, WEN Chenyan, HUANG Wei, HU Kai. CT Image Segmentation of Intracranial Hemorrhage Based on ESC-TransUNet Network [J]. Computer Science, 2025, 52(6A): 240700030-9. |
[7] | RAN Qin, RUAN Xiaoli, XU Jing, LI Shaobo, HU Bingqi. Function Prediction of Therapeutic Peptides with Multi-coded Neural Networks Based on Projected Gradient Descent [J]. Computer Science, 2025, 52(6A): 240800024-6. |
[8] | FAN Xing, ZHOU Xiaohang, ZHANG Ning. Review on Methods and Applications of Short Text Similarity Measurement in Social Media Platforms [J]. Computer Science, 2025, 52(6A): 240400206-8. |
[9] | YANG Jixiang, JIANG Huiping, WANG Sen, MA Xuan. Research Progress and Challenges in Forest Fire Risk Prediction [J]. Computer Science, 2025, 52(6A): 240400177-8. |
[10] | WANG Jiamin, WU Wenhong, NIU Hengmao, SHI Bao, WU Nier, HAO Xu, ZHANG Chao, FU Rongsheng. Review of Concrete Defect Detection Methods Based on Deep Learning [J]. Computer Science, 2025, 52(6A): 240900137-12. |
[11] | HAO Xu, WU Wenhong, NIU Hengmao, SHI Bao, WU Nier, WANG Jiamin, CHU Hongkun. Survey of Man-Machine Distance Detection Method in Construction Site [J]. Computer Science, 2025, 52(6A): 240700098-10. |
[12] | CHEN Shijia, YE Jianyuan, GONG Xuan, ZENG Kang, NI Pengcheng. Aircraft Landing Gear Safety Pin Detection Algorithm Based on Improved YOlOv5s [J]. Computer Science, 2025, 52(6A): 240400189-7. |
[13] | GAO Junyi, ZHANG Wei, LI Zelin. YOLO-BFEPS:Efficient Attention-enhanced Cross-scale YOLOv10 Fire Detection Model [J]. Computer Science, 2025, 52(6A): 240800134-9. |
[14] | ZHANG Hang, WEI Shoulin, YIN Jibin. TalentDepth:A Monocular Depth Estimation Model for Complex Weather Scenarios Based onMultiscale Attention Mechanism [J]. Computer Science, 2025, 52(6A): 240900126-7. |
[15] | HUANG Hong, SU Han, MIN Peng. Small Target Detection Algorithm in UAV Images Integrating Multi-scale Features [J]. Computer Science, 2025, 52(6A): 240700097-5. |
|