Computer Science ›› 2025, Vol. 52 ›› Issue (8): 374-384.doi: 10.11896/jsjkx.241000140
• Information Security • Previous Articles Next Articles
SU Shiyu 1, YU Jiong 2, LI Shu3, JIU Shicheng1
CLC Number:
[1]ZHANG Y Y,QIAN Y R,TAO W B,et al.Survey of Attribute Graph Anomaly Detection Based on Deep Learning[J].ComputerEngineering and Applications,2022,58(19):1-13. [2]HAJLI N,SAEED U,TAJVIDI M,et al.Social bots and thespread of disinformation in social media:the challenges of artificial intelligence[J].British Journal of Management,2022,33(3):1238-1253. [3]LU Y J,SHENG L K,ZHANG Y L.Research on structural diversity of citation network oriented to evaluation of literature [J].Application Research of Computers,2024,41(2):408-414. [4]LIU H L,LIU Y X,XU J Y,et al.Research Progress in Application of Graph Anomaly Detection in Financial Anti-Fraud[J].Computer Engineering and Applications,2022,58(22):41-53. [5]LI Z,JIN X L,WANG Y J,et al.Anomaly Node DetectionMethod Based on Variational Graph Auto-Encoders in Attri-bute Networks[J].Pattern Recognition and Artificial Intelligence,2022,35(1):17-25. [6]XU X,YURUK N,FENG Z,et al.Scan:a structural clustering algorithm for networks[C]//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2007:824-833. [7]LI S,YU J,LU Y,et al.Self-supervised enhanced denoising diffusion for anomaly detection[J].Information Sciences,2024,669:120612. [8]ZHUANG Y S,LIN S L,LIN Z X,et al.Study on Generative Adversarial Network for Data Anomaly Detection[J].Computer Engineering and Applications,2022,58(4):143-149. [9]DING K,SHU K,SHAN X,et al.Cross-domain graph anomaly detection[J].IEEE Transactions on Neural Networks and Learning Systems,2021,33(6):2406-2415. [10]LI Y,YANG X,GAO Q,et al.Cross-regional Fraud Detection via Continual Learning with Knowledge Transfer[J].IEEE Transactions on Knowledge and Data Engineering,2024,36(12):7865-7877. [11]ZHANG F,FAN H,WANG R,et al.Deep dual support vector data description for anomaly detection on attributed networks[J].International Journal of Intelligent Systems,2022,37(2):1509-1528. [12]BANDYOPADHYAY S,LOKESH N,MURTY M N.Outlieraware network embedding for attributed networks[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2019:12-19. [13]WANG Q,PANG G,SALEHI M,et al.Cross-domain graphanomaly detection via anomaly-aware contrastive alignment[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2023:4676-4684. [14]LI Z,LIANG S,SHI J,et al.Cross-domain graph level anomaly detection[J].IEEE Transactions on Knowledge and Data Engineering,2024,36(12):7839-7850. [15]QU C,JI F,QIU M,et al.Learning to selectively transfer:Reinforced transfer learning for deep text matching[C]//Procee-dings of the twelfth ACM International Conference on Web Search and Data Mining.2019:699-707. [16]TZENG E,HOFFMAN J,SAENKO K,et al.Adversarial dis-criminative domain adaptation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:7167-7176. [17]GUO J Y,LI R H,ZHANG Y,et al.Graph neural networkbased anomaly detection in dynamic networks[J].Journal of Software,2020,31(3):748-762. [18]CHEN B F,LI J D,LU X J,et al.Survey of Deep Learning Based Graph Anomaly Detection Methods[J].Journal of Computer Research and Development,2021,58(7):1436-1455 [19]MA X,WU J,XUE S,et al.A comprehensive survey on graph anomaly detection with deep learning[J].IEEE Transactions on Knowledge and Data Engineering,2021,35(12):12012-12038. [20]LIU N,HUANG X,HU X.Accelerated Local Anomaly Detection via Resolving Attributed Networks[C]//IJCAI.2017:2337-2343. [21]LI J,DANI H,HU X,et al.Radar:Residual analysis for anomaly detection in attributed networks[C]//IJCAI.2017:2152-2158. [22]WU L,HU X,MORSTATTER F,et al.Adaptive spammer detection with sparse group modeling[C]//Proceedings of the International AAAI Conference on Web and Social Media.2017:319-326. [23]DING K,LI J,BHANUSHALI R,et al.Deep anomaly detection on attributed networks[C]//Proceedings of the 2019 SIAM International Conference on Data Mining.Society for Industrial and Applied Mathematics,2019:594-602. [24]FAN H,ZHANG F,LI Z.Anomalydae:Dual autoencoder for anomaly detection on attributed networks[C]//2020 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP 2020).IEEE,2020:5685-5689. [25]LUO X,WU J,BEHESHTI A,et al.Comga:Community-aware attributed graph anomaly detection[C]//Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining.2022:657-665. [26]LIU Y,LI Z,PAN S,et al.Anomaly detection on attributed networks via contrastive self-supervised learning[J].IEEE transactions on neural networks and learning systems,2021,33(6):2378-2392. [27]ZHENG Y,JIN M,LIU Y,et al.Generative and contrastive self-supervised learning for graph anomaly detection[J].IEEE Transactions on Knowledge and Data Engineering,2021,35(12):12220-12233. [28]ZHANG J,WANG S,CHEN S.Reconstruction enhanced multi-view contrastive learning for anomaly detection on attributed networks[J].arXiv:2205.04816,2022. [29]HAN X,YUAN S.Unsupervised cross-system log anomaly detection via domain adaptation[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management.2021:3068-3072. [30]SU Y,TAN Y,AN S,et al.Semantic-driven dual consistency learning for weakly supervised video anomaly detection[J].Pattern Recognition,2025,157:110898. [31]LONG M,CAO Y,WANG J,et al.Learning transferable features with deep adaptation networks[C]//International Confe-rence on Machine Learning.PMLR,2015:97-105. [32]ZELLINGER W,GRUBINGER T,LUGHOFER E,et al.Central moment discrepancy(CMD) for domain-invariant representation learning[J].arXiv:1702.08811,2017. [33]KANG G,JIANG L,YANG Y,et al.Contrastive adaptation network for unsupervised domain adaptation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:4893-4902. [34]FLAMARY R,COURTY N,TUIA D,et al.Optimal transport for domain adaptation[J].arXiv:1507.00504,2016. [35]GHIFARY M,KLEIJN W B,ZHANG M,et al.Deep recon-struction-classification networks for unsupervised domain adaptation[C]//Computer Vision-ECCV 2016:14th European Conference,Amsterdam,The Netherlands,October 11-14,2016,Proceedings,Part IV 14.Springer International Publishing,2016:597-613. [36]BOUSMALIS K,TRIGEORGIS G,SILBERMAN N,et al.Domain separation networks[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems.2016:343-351. [37]GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Generative adversarial nets[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems.2014:2672-2680. [38]GANIN Y,USTINOVA E,AJAKAN H,et al.Domain-adversarial training of neural networks[J].Journal of Machine Lear-ning Research,2016,17(59):1-35. [39]LONG M,CAO Z,WANG J,et al.Conditional adversarial do-main adaptation[C]//Proceedings of the 32nd International Conference on Neural Information processing Systems.2018:1647-1657. [40]KONG L C,LIU G Z.Review of Outlier Detection Algorithms[J].Computer Science,2024,51(8):20-33. [41]PENG Z,LUO M,LI J,et al.ANOMALOUS:A Joint Modeling Approach for Anomaly Detection on Attributed Networks[C]//IJCAI.2018:3513-3519. [42]BANDYOPADHYAY S,LOKESH N,VIVEK S V,et al.Outlier resistant unsupervised deep architectures for attributed network embedding[C]//Proceedings of the 13th International Conference on Web Search and Data Mining.2020:25-33. [43]WANG X,JIN B,DU Y,et al.One-class graph neural networks for anomaly detection in attributed networks[J].Neural Computing and Applications,2021,33:12073-12085. [44]DIEDERIK P K.Adam:A method for stochastic optimization[J].arXiv:1412.6980,2014. |
[1] | TANG Boyuan, LI Qi. Review on Application of Spatial-Temporal Graph Neural Network in PM2.5 ConcentrationForecasting [J]. Computer Science, 2025, 52(8): 71-85. |
[2] | GUO Husheng, ZHANG Xufei, SUN Yujie, WANG Wenjian. Continuously Evolution Streaming Graph Neural Network [J]. Computer Science, 2025, 52(8): 118-126. |
[3] | JIANG Kun, ZHAO Zhengpeng, PU Yuanyuan, HUANG Jian, GU Jinjing, XU Dan. Cross-modal Hypergraph Optimisation Learning for Multimodal Sentiment Analysis [J]. Computer Science, 2025, 52(7): 210-217. |
[4] | ZHANG Taotao, XIE Jun, QIAO Pingjuan. Specific Emitter Identification Based on Progressive Self-training Open Set Domain Adaptation [J]. Computer Science, 2025, 52(7): 279-286. |
[5] | GU Zhaojun, YANG Xueying, SUI He. Improved SVM Model for Industrial Control Anomaly Detection Based on InterferenceSample Distribution Optimization [J]. Computer Science, 2025, 52(7): 388-398. |
[6] | LUO Xuyang, TAN Zhiyi. Knowledge-aware Graph Refinement Network for Recommendation [J]. Computer Science, 2025, 52(7): 103-109. |
[7] | HAO Jiahui, WAN Yuan, ZHANG Yuhang. Research on Node Learning of Graph Neural Networks Fusing Positional and StructuralInformation [J]. Computer Science, 2025, 52(7): 110-118. |
[8] | ZHENG Chuangrui, DENG Xiuqin, CHEN Lei. Traffic Prediction Model Based on Decoupled Adaptive Dynamic Graph Convolution [J]. Computer Science, 2025, 52(6A): 240400149-8. |
[9] | YIN Wencui, XIE Ping, YE Chengxu, HAN Jiaxin, XIA Xing. Anomaly Detection of Multi-variable Time Series Data Based on Variational Graph Auto-encoders [J]. Computer Science, 2025, 52(6A): 240700124-8. |
[10] | TENG Minjun, SUN Tengzhong, LI Yanchen, CHEN Yuan, SONG Mofei. Internet Application User Profiling Analysis Based on Selection State Space Graph Neural Network [J]. Computer Science, 2025, 52(6A): 240900060-8. |
[11] | SHI Enyi, CHANG Shuyu, CHEN Kejia, ZHANG Yang, HUANG Haiping. BiGCN-TL:Bipartite Graph Convolutional Neural Network Transformer Localization Model for Software Bug Partial Localization Scenarios [J]. Computer Science, 2025, 52(6A): 250200086-11. |
[12] | LIAO Sirui, HUANG Feihu, ZHAN Pengxiang, PENG Jian, ZHANG Linghao. DCDAD:Differentiated Context Dependency for Time Series Anomaly Detection Method [J]. Computer Science, 2025, 52(6): 106-117. |
[13] | WANG Jinghong, WU Zhibing, WANG Xizhao, LI Haokang. Semantic-aware Heterogeneous Graph Attention Network Based on Multi-view RepresentationLearning [J]. Computer Science, 2025, 52(6): 167-178. |
[14] | QIAO Yu, XU Tao, ZHANG Ya, WEN Fengpeng, LI Qiangwei. Graph Neural Network Defect Prediction Method Combined with Developer Dependencies [J]. Computer Science, 2025, 52(6): 52-57. |
[15] | HUANG Qian, SU Xinkai, LI Chang, WU Yirui. Hypergraph Convolutional Network with Multi-perspective Topology Refinement forSkeleton-based Action Recognition [J]. Computer Science, 2025, 52(5): 220-226. |
|