Computer Science ›› 2025, Vol. 52 ›› Issue (6): 52-57.doi: 10.11896/jsjkx.240700119
• Computer Software • Previous Articles Next Articles
QIAO Yu1, XU Tao2, ZHANG Ya1, WEN Fengpeng1, LI Qiangwei1
CLC Number:
[1]ZAIN Z M,SAKRI S,ISMAIL N H A.Application of deeplearning in software defect prediction:systematic literature review and meta-analysis [J].Information and Software Techno-logy,2023,158:107175. [2]TIAN X,CHANG J,ZHANG C,et al.Survey of open-sourcesoftware defect prediction method[J].Journal of Computer Research and Development,2023,60(7):1467-1488. [3]QIU S,HUANG M,LIANG Y,et al.Code multiview hypergraph representation learning for software defect prediction[J].IEEE Transactions on Reliability,2024,73(4):1863-1876. [4]PHAN A V,NGUYEN M L,BUI L T.Convolutional neural networks over control flow graphs for software defect prediction[C]//Proceedings of the 2017 IEEE 29th International Conference on Tools with Artificial Intelligence(ICTAI).Boston,USA:IEEE,2017:1-8. [5]ZIMMERMANN T,NAGAPPAN N.Predicting defects using network analysis on dependency graphs[C]//Proceedings of the 30th international conference on Software engineering.Leipzig,Germany,2008:531-540. [6]OSTRAND T J,WEYUKER E J,BELL R M.Programmer-based fault prediction[C]//Proceedings of the 6th International Conference on Predictive Models in Software Engineering.Timisoara,Romania,2010:1-10. [7]TANG F,HE P.Software Defect Prediction using Multi-scale Structural Information [C]//Proceedings of the 2023 9th International Conference on Computing and Artificial Intelligence.2023:548-556. [8]MA J,SUN Y Y,HE P,et al.GSAGE2defect:An Improved Approach to Software Defect Prediction based on Inductive Graph Neural Network [C]//Proceedings of the International Conference on Software Engineering and Knowledge Engineering(SEKE).2023:45-50. [9]ZENG C,ZHOU C Y,LV S K,et al.Gcn2defect:Graph convolutional networks for smotetomek-based software defect prediction[C]//Proceedings of the 2021 IEEE 32nd International Symposium on Software Reliability Engineering(ISSRE).Wuhan,China:IEEE,2021:69-79. [10]XU J,WANG F,AI J.Defect prediction with semantics and context features of codes based on graph representation learning[J].IEEE Transactions on Reliability,2020,70(2):613-625. [11]ZHOU C,HE P,ZENG C,et al.Software defect prediction with semantic and structural information of codes based on graph neural networks[J].Information and Software Technology,2022,152:107057. [12]CHEN Y,WU L,ZAKI M J.Reinforcement learning basedgraph-to-sequence model for natural question generation [EB/OL].(2019-08-14) [2024-04-19].http://arxiv.org/abs/1908.04942. [13]YATISH S,JIARPAKDEE J,THONGTANUNAM P,et al.Mining software defects:Should we consider affected releases?[C]//Proceedings of the 2019 IEEE/ACM 41st International Conference on Software Engineering(ICSE).Montreal,Canada:IEEE,2019:654-665. [14]WANG S,LIU T,NAM J,et al.Deep semantic feature learning for software defect prediction[J].IEEE Transactions on Software Engineering,2018,46(12):1267-1293. [15]XUAN J,JIANG H,HU Y,et al.Towards effective bug triage with software data reduction techniques[J].IEEE Transactions on Knowledge and Data Engineering,2014,27(1):264-280. [16]MALHOTRA R.A systematic review of machine learning techniques for software fault prediction[J].Applied Soft Computing,2015,27:504-518. [17]BREIMAN L.Random Forests[J].Machine Learning,2001,45:5-32. [18]WANG S,LIU T,TAN L.Automatically learning semantic features for defect prediction[C]//Proceedings of the 38th International Conference on Software Engineering.Austin,USA,2016:297-308. [19]LESSMANN S,BAESENS B,MUES C,et al.Benchmarkingclassification models for software defect prediction:A proposed framework and novel findings[J].IEEE Transactions on Software Engineering,2008,34(4):485-496. [20]RUFIBACH K.Use of Brier score to assess binary predictions[J].Journal of Clinical Epidemiology,2010,63(8):938-939. [21]WOOLSON R F.Wilcoxon signed-rank test[J/OL]. https://doi.org/10.1002/0470011815.b2a15177. [22]MACBETH G,RAZUMIEJCZYK E,LEDESMA R D.Cliff'sdelta calculator:a nonparametric effect size program for two groups of observations[J].Universitas Psychologica,2011,10(2):545-555. [23]ARMSTRONG R A.When to use the Bonferroni correction[J].Ophthalmic and Physiological Optics,2014,34(5):502-508. |
[1] | FAN Xing, ZHOU Xiaohang, ZHANG Ning. Review on Methods and Applications of Short Text Similarity Measurement in Social Media Platforms [J]. Computer Science, 2025, 52(6A): 240400206-8. |
[2] | YANG Jixiang, JIANG Huiping, WANG Sen, MA Xuan. Research Progress and Challenges in Forest Fire Risk Prediction [J]. Computer Science, 2025, 52(6A): 240400177-8. |
[3] | WANG Jiamin, WU Wenhong, NIU Hengmao, SHI Bao, WU Nier, HAO Xu, ZHANG Chao, FU Rongsheng. Review of Concrete Defect Detection Methods Based on Deep Learning [J]. Computer Science, 2025, 52(6A): 240900137-12. |
[4] | HAO Xu, WU Wenhong, NIU Hengmao, SHI Bao, WU Nier, WANG Jiamin, CHU Hongkun. Survey of Man-Machine Distance Detection Method in Construction Site [J]. Computer Science, 2025, 52(6A): 240700098-10. |
[5] | ZHENG Chuangrui, DENG Xiuqin, CHEN Lei. Traffic Prediction Model Based on Decoupled Adaptive Dynamic Graph Convolution [J]. Computer Science, 2025, 52(6A): 240400149-8. |
[6] | TENG Minjun, SUN Tengzhong, LI Yanchen, CHEN Yuan, SONG Mofei. Internet Application User Profiling Analysis Based on Selection State Space Graph Neural Network [J]. Computer Science, 2025, 52(6A): 240900060-8. |
[7] | WANG Chanfei, YANG Jing, XU Yamei, HE Jiai. OFDM Index Modulation Signal Detection Based on Deep Learning [J]. Computer Science, 2025, 52(6A): 240900122-6. |
[8] | SHI Enyi, CHANG Shuyu, CHEN Kejia, ZHANG Yang, HUANG Haiping. BiGCN-TL:Bipartite Graph Convolutional Neural Network Transformer Localization Model for Software Bug Partial Localization Scenarios [J]. Computer Science, 2025, 52(6A): 250200086-11. |
[9] | ZHOU Lei, SHI Huaifeng, YANG Kai, WANG Rui, LIU Chaofan. Intelligent Prediction of Network Traffic Based on Large Language Model [J]. Computer Science, 2025, 52(6A): 241100058-7. |
[10] | GUAN Xin, YANG Xueyong, YANG Xiaolin, MENG Xiangfu. Tumor Mutation Prediction Model of Lung Adenocarcinoma Based on Pathological [J]. Computer Science, 2025, 52(6A): 240700010-8. |
[11] | TAN Jiahui, WEN Chenyan, HUANG Wei, HU Kai. CT Image Segmentation of Intracranial Hemorrhage Based on ESC-TransUNet Network [J]. Computer Science, 2025, 52(6A): 240700030-9. |
[12] | RAN Qin, RUAN Xiaoli, XU Jing, LI Shaobo, HU Bingqi. Function Prediction of Therapeutic Peptides with Multi-coded Neural Networks Based on Projected Gradient Descent [J]. Computer Science, 2025, 52(6A): 240800024-6. |
[13] | ZOU Ling, ZHU Lei, DENG Yangjun, ZHANG Hongyan. Source Recording Device Verification Forensics of Digital Speech Based on End-to-End DeepLearning [J]. Computer Science, 2025, 52(6A): 240800028-7. |
[14] | CHEN Shijia, YE Jianyuan, GONG Xuan, ZENG Kang, NI Pengcheng. Aircraft Landing Gear Safety Pin Detection Algorithm Based on Improved YOlOv5s [J]. Computer Science, 2025, 52(6A): 240400189-7. |
[15] | GAO Junyi, ZHANG Wei, LI Zelin. YOLO-BFEPS:Efficient Attention-enhanced Cross-scale YOLOv10 Fire Detection Model [J]. Computer Science, 2025, 52(6A): 240800134-9. |
|