Computer Science ›› 2025, Vol. 52 ›› Issue (9): 71-79.doi: 10.11896/jsjkx.250100116
• Intelligent Medical Engineering • Previous Articles Next Articles
LI Yaru1, WANG Qianqian1, CHE Chao1,2, ZHU Deheng1
CLC Number:
[1]YANG Z,ZHONG W,ZHAO L,et al.MGraphDTA:deep multiscale graph neural network for explainable drug-target binding affinity prediction[J].Chemical science,2022,13(3):816-833. [2]DU L,GENG C,ZENG Q,et al.Dockey:a modern integrated tool for large-scale molecular docking and virtual screening[J].Briefings in Bioinformatics,2023,24(2):47. [3]KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenetclassification with deep convolutional neural networks[J].Communications of the ACM,2017,60(6):84-90. [4]FENG B,ZHANG Y,ZHENG H,et al.Defusedti:Interpretable drug target interaction prediction model with dual-branch encoder and multiview fusion[J].Future Generation Computer Systems,2024,161:239-247. [5]WU L,HUANG Y,TAN C,et al.Psc-cpi:Multi-scale protein sequence-structure contrasting for efficient and generalizable compound-protein interaction prediction[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2024:310-319. [6]HUA Y,FENG Z,SONG X,et al.MMDG-DTI:Drug-target interaction prediction via multimodal feature fusion and domain generalization[J].Pattern Recognition,2025,157:110887. [7]CHEN L,TAN X,WANG D,et al.TransformerCPI:improving compound-protein interaction prediction by sequence-based deep learning with self-attention mechanism and label reversal experiments[J].Bioinformatics,2020,36(16):4406-4414. [8]DING Y J,GUO F,TIWARI P,et al.Identification of drug-side effect association via multi-view semi-supervised sparse model[J].IEEE Transactions on Artificial Intelligence,2024,5(5):2151-2162. [9]JIANG M,LI Z,ZHANG S,et al.Drug-target affinity predictionusing graph neural network and contact maps[J].RSCAdvan-ces,2020,10(35):20701-20712. [10]ZHANG Z,LIU Q,WANG H,et al.Motif-based graph self-supervised learning for molecular property prediction[J].Advances in Neural Information Processing Systems,2021,34:15870-15882. [11]DEGEN J,WEGSCHEID-GERLACH C,ZALIANI A,et al.On the art of compiling and using ‘drug-like’ chemical fragment spaces[J].ChemMedChem,2008,3(10):1503. [12]VELIČKOVIĆ P,CUCURULL G,CASANOVA A,et al.Graph attention networks[C]//ICLR 2018 Conference Blind Submission.2018. [13]KIPF T N,WELLING M.Semi-supervised classification withgraph convolutional networks[C]//Proceedings of the International Conference on Learning Representations.2017:1-14. [14]XU K,HU W,LESKOVEC J,et al.How Powerful are Graph Neural Networks?[C]//Proceedings of the 7th International Conference on Learning Representations.2019. [15]LEE J,LEE Y,KIM J,et al.Set transformer:A framework for attention-based permutation-invariant neural networks[C]//Proceedings of the International Conference on Machine Lear-ning.PMLR,2019:3744-3753. [16]MAK K,WONG Y,PICHIKA M.Artificial intelligence in drug discovery and development[J].Drug Discovery and Evaluation:Safety and Pharmacokinetic Assays,2024(10):1461-98. [17]ÖZTÜRK H,ÖZGÜR A,OZKIRIMLI E.DeepDTA:deep drug-target binding affinity prediction[J].Bioinformatics,2018,34(17):821-829. [18]SHIN B,PARK S,KANG K,et al.Self-attention based molecule representation for predicting drug-target interaction[C]//Proceedings of the Machine Learning for Healthcare Conference.PMLR,2023:230-248. [19]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isall you need[C]//Proceedings of the 31st International Confe-rence on Neural Information Processing Systems.2017:6000-6010. [20]QIU Z,JIAO Q,WANG Y,et al.RzMLP-DTA:gMLP network with ReZero for sequence-based drug-target affinity prediction[C]//Proceedings of the 2021 IEEE International Conference on Bioinformatics and Biomedicine(BIBM).2021:308-313. [21]KAO P,KAO S,HUANG N,et al.Toward drug-target interaction prediction via ensemble modeling and transfer learning[C]//Proceedings of the 2021 IEEE International Conference on Bioinformatics and Biomedicine.2021:2384-2391. [22]YUAN W,CHEN G,CHEN C.FusionDTA:attention-basedfeature polymerizer and knowledge distillation for drug-target binding affinity prediction[J].Briefings in Bioinformatics,2022,23(1):506. [23]SIAMI-NAMINI S,TAVAKOLI N,NAMIN A S.The perfor-mance of LSTM and BiLSTM in forecasting time series[C]//Proceedings of the 2019 IEEE International Conference on Big Data.2019:3285-3292. [24]NGUYEN T,LE H,QUINN T P,et al.GraphDTA:predicting drug-target binding affinity with graph neural networks[J].Bioinformatics,2021,37(8):1140-1147. [25]LI F,ZHANG Z,GUAN J,et al.Effective drug-target interaction prediction with mutual interaction neural network[J].Bioinformatics,2022,38(14):3582-3589. [26]WANG P,ZHENG S,JIANG Y,et al.Structure-aware multimodal deep learning for drug-protein interaction prediction[J].Journal of chemical information and modeling,2022,62(5):1308-1317. [27]BENTO A,HERSEY A,FÉLIX E,et al.An open source chemical structure curation pipeline using RDKit[J].Journal of Cheminformatics,2020,12(1):1-16. [28]VARADI M,ANYANGO S,DESHPANDE M,et al.AlphaFold Protein Structure Database:massively expanding the structural coverage of protein-sequence space with high-accuracy models[J].Nucleic Acids Research,2022,50(D1):439-444. [29]LIU H,SUN J,GUAN J,et al.Improving compound-protein interaction prediction by building up highly credible negative samples[J].Bioinformatics,2015,31(12):221-229. [30]SUTHAHARAN S.Support vector machine[J].MachineLearning Models and Algorithms for Big Data Classification:Thinking with Examples for Effective Learning,2016(11):207-235. [31]RIGATTI S.Random forest[J].Journal of Insurance Medicine,2017,47(1):31-39. [32]HUANG K,XIAO C,GLASS L M,et al.MolTrans:molecular interaction transformer for drug-target interaction prediction[J].Bioinformatics,2021,37(6):830-836. [33]LI M,LU Z,WU Y,et al.BACPI:a bi-directional attention neural network for compound-protein interaction and binding affinity prediction[J].Bioinformatics,2022,38(7):1995-2002. [34]PENG L,LIU X,YANG L,et al.BINDTI:a bi-directional intention network for drug-target interaction identification based on attention mechanisms[J].IEEE Journal of Biomedical and Health Informatics,2024,28:1-11. |
[1] | YIN Shi, SHI Zhenyang, WU Menglin, CAI Jinyan, YU De. Deep Learning-based Kidney Segmentation in Ultrasound Imaging:Current Trends and Challenges [J]. Computer Science, 2025, 52(9): 16-24. |
[2] | ZENG Lili, XIA Jianan, LI Shaowen, JING Maike, ZHAO Huihui, ZHOU Xuezhong. M2T-Net:Cross-task Transfer Learning Tongue Diagnosis Method Based on Multi-source Data [J]. Computer Science, 2025, 52(9): 47-53. |
[3] | LUO Chi, LU Lingyun, LIU Fei. Partial Differential Equation Solving Method Based on Locally Enhanced Fourier NeuralOperators [J]. Computer Science, 2025, 52(9): 144-151. |
[4] | LIU Leyuan, CHEN Gege, WU Wei, WANG Yong, ZHOU Fan. Survey of Data Classification and Grading Studies [J]. Computer Science, 2025, 52(9): 195-211. |
[5] | LIU Wei, XU Yong, FANG Juan, LI Cheng, ZHU Yujun, FANG Qun, HE Xin. Multimodal Air-writing Gesture Recognition Based on Radar-Vision Fusion [J]. Computer Science, 2025, 52(9): 259-268. |
[6] | LIU Zhengyu, ZHANG Fan, QI Xiaofeng, GAO Yanzhao, SONG Yijing, FAN Wang. Review of Research on Deep Learning Compiler [J]. Computer Science, 2025, 52(8): 29-44. |
[7] | TANG Boyuan, LI Qi. Review on Application of Spatial-Temporal Graph Neural Network in PM2.5 ConcentrationForecasting [J]. Computer Science, 2025, 52(8): 71-85. |
[8] | GUO Husheng, ZHANG Xufei, SUN Yujie, WANG Wenjian. Continuously Evolution Streaming Graph Neural Network [J]. Computer Science, 2025, 52(8): 118-126. |
[9] | LUO Xuyang, TAN Zhiyi. Knowledge-aware Graph Refinement Network for Recommendation [J]. Computer Science, 2025, 52(7): 103-109. |
[10] | HAO Jiahui, WAN Yuan, ZHANG Yuhang. Research on Node Learning of Graph Neural Networks Fusing Positional and StructuralInformation [J]. Computer Science, 2025, 52(7): 110-118. |
[11] | JIANG Kun, ZHAO Zhengpeng, PU Yuanyuan, HUANG Jian, GU Jinjing, XU Dan. Cross-modal Hypergraph Optimisation Learning for Multimodal Sentiment Analysis [J]. Computer Science, 2025, 52(7): 210-217. |
[12] | ZHENG Cheng, YANG Nan. Aspect-based Sentiment Analysis Based on Syntax,Semantics and Affective Knowledge [J]. Computer Science, 2025, 52(7): 218-225. |
[13] | ZHOU Lei, SHI Huaifeng, YANG Kai, WANG Rui, LIU Chaofan. Intelligent Prediction of Network Traffic Based on Large Language Model [J]. Computer Science, 2025, 52(6A): 241100058-7. |
[14] | GUAN Xin, YANG Xueyong, YANG Xiaolin, MENG Xiangfu. Tumor Mutation Prediction Model of Lung Adenocarcinoma Based on Pathological [J]. Computer Science, 2025, 52(6A): 240700010-8. |
[15] | TAN Jiahui, WEN Chenyan, HUANG Wei, HU Kai. CT Image Segmentation of Intracranial Hemorrhage Based on ESC-TransUNet Network [J]. Computer Science, 2025, 52(6A): 240700030-9. |
|