Computer Science ›› 2019, Vol. 46 ›› Issue (11A): 251-254.

• Pattern Recognition & Image Processing • Previous Articles     Next Articles

Large-scale Automatic Driving Scene Reconstruction Based on Binocular Image

LI Yin-guo, ZHOU Zhong-kui, BAI Ling   

  1. (College of Computer Science and Technology,Chongqing University of Posts & Telecommunications,Chongqing 400065,China)
  • Online:2019-11-10 Published:2019-11-20

Abstract: The large-scale smart driving scene reconstruction can feedback the surrounding road traffic environment information for the vehicle control system in the vehicle driving environment,and realize the visualization of the environmental information.At present,the existing three-dimensional reconstruction scheme is mainly oriented to thestructuredscene,and it is difficult to meet the real-time performance required by the smart driving system while ensuring a certain precision which can make when the three-dimensional reconstruction of the large-scale unstructured smart driving scene is performed.In order to solve this problem,a three-dimensional scene reconstruction method based on binocular vision is proposed.Firstly,by optimizing the stereo matching strategy,the stereo matching efficiency is improved,and then the uniform distance feature point extraction algorithm RSD is proposed to reduce the time consumption of 3D point cloud computing and triangulation,and the real-time performance of large-scale smart driving scene reconstruction is improved.The experimental results prove the effectiveness of this algorithm,which can be used to reconstruct the scene of large-scale smart driving scene,and can meet the demand of intelligent driving system in real-time.

Key words: Binocular vision, Depth value calculation, Feature extraction, Intelligent driving scene reconstruction, Stereo matching

CLC Number: 

  • TP391.41
[3]ZHANG X Y,GAO H B,GUO M,et al.A study on key technologies of unmanned driving[J].CAAI Transactions on Intelligence Technology,2016,1(1):4-13.
[4]陈辉,马世伟,Andreas Nuechter.基于激光扫描和SFM的非同步点云三维重构方法[J].仪器仪表学报,2016,37(5):1148-1157.
[8]BAYKANT B,ALAGO Z.Obtaining Depth Maps FromColorImages By Region Based Stereo Matching Algorithms[J].OncuBilim Algorithm And Systems Labs,2008,8(4):122-134.
[11]YU L,ZHANG D R, HOLDEN E J.A fast and fully automatic registration approach based on point features for multi-source remote-sensing images[J].Computers and Geosciences,2007,34(7):838-848.
[12]HARRIS C,STEPHENS M J.A combined corner and edge detector[C]∥Proceedingsof Fourth Alvey Vision Conference.Manchester.England:IEEE,1998:147-151.
[13]LOWE D G.Distinctive Image Features from Scale-InvariantKeypoints[J].International Journal of Computer Vision,2004,60(2):92-109.
[14]BAY H,ESS A,TUYTELAARS T,et al.Speeded-Up Robust Features (SURF)[J].Computer Vision and Image Understanding,2007,110(3):346-359.
[15]RUBLEE E, RABAUD V, KONOLIGE K,et al.ORB:an efficient alternative to SIFT or SURF[C]∥IEEE International Conference on Computer Vision.2011:2564-2571.
[16]MUJAM,LOWE D G.Fast approximate nearest neighborswith automaticalgorithm configuration[C]∥Proceedingsof IEEE Conference on Computer Vision Theory and Applications.Lisbon,Portugal:IEEE Computer Society,2009:331-340.
[17]CANDÉS E J,ROMBERG J K,TAO T.Stable signal recovery from incomplete and inaccurate measurements[J].Communications on Pure and Applied Mathematics,2006,59(8):1-15.
[1] ZHANG Yuan, KANG Le, GONG Zhao-hui, ZHANG Zhi-hong. Related Transaction Behavior Detection in Futures Market Based on Bi-LSTM [J]. Computer Science, 2022, 49(7): 31-39.
[2] ZENG Zhi-xian, CAO Jian-jun, WENG Nian-feng, JIANG Guo-quan, XU Bin. Fine-grained Semantic Association Video-Text Cross-modal Entity Resolution Based on Attention Mechanism [J]. Computer Science, 2022, 49(7): 106-112.
[3] CHENG Cheng, JIANG Ai-lian. Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction [J]. Computer Science, 2022, 49(7): 120-126.
[4] LIU Wei-ye, LU Hui-min, LI Yu-peng, MA Ning. Survey on Finger Vein Recognition Research [J]. Computer Science, 2022, 49(6A): 1-11.
[5] GAO Yuan-hao, LUO Xiao-qing, ZHANG Zhan-cheng. Infrared and Visible Image Fusion Based on Feature Separation [J]. Computer Science, 2022, 49(5): 58-63.
[6] ZUO Jie-ge, LIU Xiao-ming, CAI Bing. Outdoor Image Weather Recognition Based on Image Blocks and Feature Fusion [J]. Computer Science, 2022, 49(3): 197-203.
[7] REN Shou-peng, LI Jin, WANG Jing-ru, YUE Kun. Ensemble Regression Decision Trees-based lncRNA-disease Association Prediction [J]. Computer Science, 2022, 49(2): 265-271.
[8] CHANG Zi-ting, SHI Yu-qing, WANG Jun, YU Ming-he, YAO Lan, ZHAO Zhi-bin. Vehicle Speed Measurement Method Based on Binocular Vision [J]. Computer Science, 2021, 48(9): 135-139.
[9] ZHANG Peng, WANG Xin-qing, XIAO Yi, DUAN Bao-guo, XU Hong-hui. Real-time Binocular Depth Estimation Algorithm Based on Semantic Edge Drive [J]. Computer Science, 2021, 48(9): 216-222.
[10] ZHANG Shi-peng, LI Yong-zhong. Intrusion Detection Method Based on Denoising Autoencoder and Three-way Decisions [J]. Computer Science, 2021, 48(9): 345-351.
[11] FENG Xia, HU Zhi-yi, LIU Cai-hua. Survey of Research Progress on Cross-modal Retrieval [J]. Computer Science, 2021, 48(8): 13-23.
[12] ZHANG Li-qian, LI Meng-hang, GAO Shan-shan, ZHANG Cai-ming. Summary of Computer-assisted Tongue Diagnosis Solutions for Key Problems [J]. Computer Science, 2021, 48(7): 256-269.
[13] BAO Yu-xuan, LU Tian-liang, DU Yan-hui, SHI Da. Deepfake Videos Detection Method Based on i_ResNet34 Model and Data Augmentation [J]. Computer Science, 2021, 48(7): 77-85.
[14] CHEN Yang, WANG Jin-liang, XIA Wei, YANG Hao, ZHU Run, XI Xue-feng. Footprint Image Clustering Method Based on Automatic Feature Extraction [J]. Computer Science, 2021, 48(6A): 255-259.
[15] LI Na-na, WANG Yong, ZHOU Lin, ZOU Chun-ming, TIAN Ying-jie, GUO Nai-wang. DDoS Attack Random Forest Detection Method Based on Secondary Screening of Feature Importance [J]. Computer Science, 2021, 48(6A): 464-467.
Full text



No Suggested Reading articles found!