Computer Science ›› 2022, Vol. 49 ›› Issue (9): 1-13.doi: 10.11896/jsjkx.210900072
• Database & Big Data & Data Science • Previous Articles Next Articles
CHENG Zhang-tao, ZHONG Ting, ZHANG Sheng-ming, ZHOU Fan
CLC Number:
[1]WU L,HE X,WANG X,et al.A Survey on Neural Recommendation:From Collaborative Filtering to Content and Context Enriched Recommendation [J].arXiv:2104.13030,2021. [2]WANG S,CAO L,WANG Y,et al.A Survey on Session-based Recommender Systems [J].ACM Computing Surveys(CSUR),2021,54(7):1-38. [3]VERBERT K,MANOUSELIS N,OCHOA X,et al.Context-aware Recommender Systems for Learning:A Survey and Future Challenges [J].IEEE Transactions on Learning Technologies,2012,5(4):318-335. [4]MOONEY R J,ROY L.Content-based Book RecommendingUsing Learning for Text Categorization[C]//Proceedings of ACM Conference on Digital libraries.2000:195-204. [5]BREESE J S,HECKERMAN D,KADIE C.Empirical Analysis of Predictive Algorithms for Collaborative Filtering [J].arXiv:1301.7363,2013. [6]KOREN Y,BELL R,VOLINSKY C.Matrix FactorizationTechniques for Recommender Systems [J].Computer,2009,42(8):30-37. [7]MNIH A,SALAKHUTDINOV R R.Probabilistic Matrix Factorization[C]//Proceedings of Annual Conference on Neural Information Processing Systems.2008:1257-1264. [8]HE X,PAN J,JIN O,et al.Practical Lessons from PredictingClicks on Ads at Facebook[C]//Proceedings of International Workshop on Data Mining for Online Advertising.2014:1-9. [9]RENDLE S.Factorization Machines[C]//IEEE InternationalConference on Data Mining.IEEE,2010:995-1000. [10]JUAN Y,ZHUANG Y,CHIN W S,et al.Field-aware Factorization Machines for CTR Prediction[C]//Procee-dings of ACM Conference on Recommender Systems.2016:43-50. [11]GUO H,TANG R,YE Y,et al.DeepFM:A Factorization-Machine Based Neural Network for CTR Prediction[C]//Procee-dings of International Joint Conference on Artificial Intelligence.Australia:IJCAI,2017:1725-1731. [12]ZHENG L,NOROOZI V,YUP S.Joint Deep Modeling of Users and Items Using Reviews for Recommendation[C]//Procee-dings of ACM Conference on Web Search and Data Mining.2017:425-434. [13]CHEN M,ZUO Y,JIA X,et al.CEM:A Convolutional Embedding Model for Predicting Next Locations [J].IEEE Transactions on Intelligent Transportation Systems,2020,22(6):3349-3358. [14]KRIZHEVSKY A,SUTSKEVER I,HINTON G E.ImageNetClassification With Deep Convolutional Neural Networks [J].Communications of the ACM,2017,60(6):84-90. [15]GIRSHICK R.FastR-cnn[C]//Proceedings of IEEE Conference on Computer Vision.2015:1440-1448. [16]YANG D,FANKHAUSER B,ROSSO P,et al.Location Prediction over Sparse User Mobility Traces Using RNNs:Flashback in Hidden States![C]//Proceedings of International Joint Conference on Artificial Intelligence.2020:2184-2190. [17]LIAN D,WU Y,GE Y,et al.Geography-aware Sequential Location Recommendation[C]//Proceedings of ACM SIGKDD Conference on Knowledge Discovery and Data Mining.2020:2009-2019. [18]LI X,SHE J.Collaborative Variational Autoencoder for Recommender Systems[C]//Proceedings of ACM SIGKDD Conference on Knowledge Discovery and Data Mining.2017:305-314. [19]LIANG D,KRISHNAN R G,HOFFMAN M D,et al.Varia-tional Autoencoders for Collaborative Filtering[C]//Proceedings of World Wide Web Conference.2018:689-698. [20]KIPF T N,WELLING M.Semi-supervised Classification withGraph Convolutional Networks[C]//International Conference on Learning Representations.France:OpenReview.net,2016. [21]WU Z,PAN S,CHEN F,et al.A Comprehensive Survey onGraph Neural Networks [J].IEEE Transactions on Neural Networks and Learning Systems,2020,32(1):4-24. [22]ZHOU J,CUI G,HU S,et al.Graph Neural Networks:A Review of Methods and Applications [J].AI Open,2020,1:57-81. [23]XIA F,SUN K,YU S,et al.Graph Learning:A Survey [J].arXiv:2105.00696,2021. [24]CHEN F,WANG Y C,WANG B,et al.Graph Representation Learning:A Survey [J].arXiv:1909.00958,2020. [25]DEFFERRARD M,BRESSON X,VANDERGHEYNST P.Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering[C]//Proceedings of Annual Conference on Neural Information Processing Systems.2016:3844-3852. [26]WU F,SOUZA A,ZHANG T,et al.Simplifying Graph Convolutional Networks[C]//International Conference on Machine Learning.PMLR,2019:6861-6871. [27]VELČKOVIĆ P,CUCURULL G,CASANOVA A,et al.Graph Attention Networks[C]//International Conference on Learning Representations.Canada:OpenReview.net,2018. [28]GUO Q,ZHUANG F,QIN C,et al.A Survey on Knowledge Graph-based Recommender Systems [J].IEEE Transactions on Knowledge and Data Engineering,2020,50(7):937. [29]LAKNATH S.Recommender Systems with Random Walks:A Survey [J].arXiv:1711.04101,2017. [30]GAO Y,LI Y F,LIN Y,et al.Deep Learning on KnowledgeGraph for Recommender System:A Survey [J].arXiv:2004.00387,2020. [31]WU S,SUN F,ZHANG W,et al.Graph Neural Networks in Recommender Systems:A Survey [J].arXiv:2011.02260,2020. [32]MONTI F,BRONSTEIN M M,BRESSON X.Geometric Matrix Completion with Recurrent Multi-graph Neural Networks[C]//Proceedings of Annual Conference on Neural Information Processing Systems.2017:3697-3707. [33]WANG X,HE X,CAO Y,et al.Kgat:Knowledge Graph Attention Network for Recommendation[C]//Proceedings of ACM SIGKDD Conference on Knowledge Discovery and Data Mining.2019:950-958. [34]BERG R,KIPF T N,WELLING M.Graph Convolutional Matrix Completion[J].arXiv:1706.02263,2017. [35]WANG X,HE X,WANG M,et al.Neural Graph Collaborative Filtering[C]//Proceedings of ACM SIGIR Conference on Research and Development in Information Retrieval.2019:165-174. [36]YING R,HE R,CHEN K,et al.Graph Convolutional Neural Networks for Web-scale Recommender Systems[C]//Procee-dings of ACM SIGKDD Conference on Knowledge Discovery and Data Mining.2018:974-983. [37]ZHA H,HE X,DING C,et al.Bipartite Graph Partitioning and Data Clustering[C]//Proceedings of International Conference on Information and Knowledge Management.2001:25-32. [38]ZHANG S,YAO L,SUN A,et al.Deep Learning Based Recommender System:A Survey and New Perspectives [J].ACM Computing Surveys(CSUR),2019,52(1):1-38. [39]LI X,CHEN H.Recommendation as Link Prediction in Bipartite Graphs:A Graph Kernel-based Machine Learning Approach [J].Decision Support Systems,2013,54(2):880-890. [40]SHA X,SUN Z,ZHANG J.Attentive Knowledge Graph Embedding for Personalized Recommendation [J].arXiv:1910.08288,2019. [41]WANG Q,MAO Z,WANG B,et al.Knowledge Graph Embedding:A Survey of Approaches and Applications [J].IEEE Transactions on Knowledge and Data Engineering,2017,29(12):2724-2743. [42]YANG J H,CHEN C M,WANG C J,et al.HOP-rec:High-order Proximity for Implicit Recommendation [C]//Proceedings of ACM Conference on Recommender Systems.2018:140-144. [43]CHEN C M,WANG C J,TSAI M F,et al.Collaborative Similarity Embedding for Recommender Systems[C]//Proceedings of World Wide Web Conference.2019:2637-2643. [44]HE X,DENG K,WANG X,et al.Lightgcn:Simplifying andPowering Graph Convolution Network for Recommendation[C]//Proceedings of International ACM SIGIR Conference on Research and Development in Information Retrieval.2020:639-648. [45]PALUMBO E,RIZZO G,TRONCY R.Entity2rec:LearningUser-item Relatedness From Knowledge Graphs for Top-n Item Recommendation[C]//Proceedings of ACM Conference on Recommender Systems.2017:32-36. [46]BACKSTROM L,LESKOVEC J.Supervised Random Walks:Predicting and Recommending Links in Social Networks[C]//Proceedings of ACM Conference on Web Search and Data Mi-ning.2011:635-644. [47]ZHENG L,LU C T,JIANG F,et al.Spectral Collaborative Filtering[C]//Proceedings of ACM Conference on Recommender Systems.2018:311-319. [48]WANG H,ZHANG F,ZHANG M,et al.Knowledge-awareGraph Neural Networks with Label Smoothness Regularization for Recommender Systems[C]//Proceedings of ACM SIGKDD Conference on Knowledge Discovery and Data Mining.2019:968-977. [49]NIKOLAKOPOULOS A N,KARYPIS G.Recwalk:Nearly Uncoupled Random Walks for Top-n Recommendation[C]//Proceedings of ACM Conference on Web Search and Data Mining.2019:150-158. [50]WU L,SUN P,FU Y,et al.A Neural Influence Diffusion Model for Social Recommendation [C]//Proceedings of ACM SIGIR Conference on Research and Development in Information Retrieval.2019:235-244. [51]WU L,LI J,SUN P,et al.Diffnet++:A Neural Influence and Interest Diffusion Network for Social Recommendation [J].ar-Xiv:2002.00844,2020. [52]CHEN L,WU L,HONG R,et al.Revisiting Graph Based Collaborative Filtering:A Linear Residual Graph Convolutional Network Approach[C]//Proceedings of AAAI Conference on Artificial Intelligence.2020:27-34. [53]SONG C,WANG B,JIANG Q,et al.Social Recommendationwith Implicit Social Influence [C]//Proceedings of ACM SIGIR Conference on Research and Development in Information Retrieval.2021:1788-1792. [54]ZHANG J,SHI X,ZHAO S,et al.Star-gcn:Stacked and Reconstructed Graph Convolutional Networks for Recommender Systems[C]//Proceedings of International Joint Conference on Artificial Intelligence.2019:4264-4270. [55]ZHANG M,CHEN Y.Inductive Matrix Completion Based onGraph Neural Networks [C]//International Conference on Learning Representations.2020. [56]WEN Y,GUO L,CHEN Z,et al.Network Embedding Based Recommendation Method in Social Networks[C]//Proceedings of the Web Conference 2018.2018:11-12. [57]LIU C Y,ZHOU C,WU J,et al.Social Recommendation with An Essential Preference Space[C]//Proceedings of AAAI Conference on Artificial Intelligence.2018:346-353. [58]WANG X,WANG R,SHI C,et al.Multi-component GraphConvolutional Collaborative Filtering[C]//Proceedings of AAAI Conference on Artificial Intelligence.2020:6267-6274. [59]FAN W,MA Y,LI Q,et al.Graph Neural Networks for Social Recommendation[C]//The World Wide Web Conference.2019:417-426. [60]WU Q,ZHANG H,GAO X,et al.Dual Graph Attention Networks for Deep Latent Representation of Multifaceted Social Effects in Recommender Systems[C]//Proceedings of the WebConference 2019.2019:2091-2102. [61]SHI C,HU B,ZHAO W X,et al.Heterogeneous InformationNetwork Embedding for Recommendation [J].IEEE Transactions on Knowledge and Data Engineering,2018,31(2):357-370. [62]YANG L,LIU Z,DOU Y,et al.ConsisRec:Enhancing GNN for Social Recommendation via Consistent Neighbor Aggregation[J].arXiv:2105.02254,2021. [63]PAUDEL B,BERNSTEIN A.Random Walks with Erasure:Diversifying Personalized Recommendations on Social and Information Networks[C]//Proceedings of the Web Conference 2021.2021:2046-2057. [64]WANG H,ZHANG F,ZHAO M,et al.Multi-task FeatureLearning for Knowledge Graph Enhanced Recommendation[C]//Proceedings of the Web Conference 2019.2019:2000-2010. [65]WANG H,ZHAO M,XIE X,et al.Knowledge Graph Convolutional Networks for Recommender Systems[C]//Proceedings of the Web Conference 2019.2019:3307-3313. [66]GROVER A,LESKOVEC J.Node2vec:Scalable Feature Lear-ning for Networks[C]//Proceedings of ACM SIGKDD Confe-rence on Knowledge Discovery and Data Mining.2016:855-864. [67]ZHAO J,ZHOU Z,GUAN Z,et al.Intentgc:A Scalable Graph Convolution Framework Fusing Heterogeneous Information for Recommendation[C]//Proceedings of ACM SIGKDD Confe-rence on Knowledge Discovery and Data Mining.2019:2347-2357. [68]PEROZZI B,AL-RFOU R,SKIENA S.Deepwalk:OnlineLearning of Social Representations[C]//Proceedings of ACM SIGKDD Conference on Knowledge Discovery and Data Mi-ning.2014:701-710. [69]GORI M,PUCCI A,ROMA V,et al.Itemrank:A Random-walk Based Scoring Algorithm for Recommender Engines[C]//Proceedings of International Joint Conference on Artificial Intelligence.2007:2766-2771. [70]HAMILTON W L,YING R,LESKOVEC J.Inductive Representation Learning on Large Graphs [C]//Proceedings of International Conference on Neural Information Processing Systems.2017:1025-1035. [71]DO T D T,CAO L.Coupled Poisson Factorization Integrated with User/item Metadata for Modeling Popular and Sparse Ra-tings in Scalable Recommendation[C]//Proceedings of AAAI Conference on Artificial Intelligence.2018:2918-2925. [72]LI Z,FANG X,SHENG O R L.A Survey of Link Recommendation for Social Networks:Methods,Theoretical Foundations,and Future Research Directions [J].ACM Transactions on Management Information Systems,2017,9(1):1-26. [73]HUANG S,ZHANG J,WANG L,et al.Social Friend Recommendation Based on Multiple Network Correlation [J].IEEE Transactions on Multimedia,2015,18(2):287-299. [74]JAMALI M,ESTER M.Trustwalker:A Random Walk Model for Combining Trust-based and Item-based Recommendation[C]//Proceedings of ACM SIGKDD Conference on Knowledge Discovery and Data Mining.2009:397-406. [75]DENG S,HUANG L,XU G.Social Network-Based Service Reco-mmendation with Trust Enhancement [J].Expert Systems with Applications,2014,41(18):8075-8084. [76]TANG J,QU M,WANG M,et al.Line:Large-Scale Information Network Embedding[C]//Proceedings of International Confe-rence on World Wide Web.2015:1067-1077. [77]KOREN Y.Factorization Meets the Neighborhood:A Multifaceted Collaborative Filtering Model [C]//Proceedings of ACM SIGKDD Conference on Knowledge Discovery and Data Mining.2008:426-434. [78]CAO Y,WANG X,HE X,et al.Unifying Knowledge GraphLearning and Recommendation:Towards A Better Understan-ding of User Preferences [C]//Proceedings of the Web Confe-rence 2019.2019:151-161. [79]WANG Z,LIN G,TAN H,et al.CKAN:Collaborative Know-ledge-aware AttentiveNetwork for Recommender Systems[C]//Proceedings of ACM SIGIR Conference on Research and Deve-lopment in Information Retrieval.2020:219-228. [80]XU K,HU W,LESKOVEC J,et al.How Powerful Are Graph Neural Networks?[C]//International Conference on Learning Representations.2019. [81]YU W,QIN Z.Graph Convolutional Network for Recommendation with Low-pass Collaborative filters[C]//International Conference on Machine Learning.PMLR,2020:10936-10945. [82]WANG H,LIAN D,GE Y.Binarized Collaborative Filteringwith Distilling Graph Convolutional Networks [J].arXiv:1906.01829,2019. [83]TAN Q,LIU N,ZHAO X,et al.Learning to Hash with Graph Neural Networks for Recommender Systems[C]//Proceedings of The Web Conference 2020.2020:1988-1998. [84]]ŞORA I.A PageRank based recommender system for identifying key classes in software systems[C]//IEEE Jubilee International Symposium on Applied Computational Intelligence and Informatics.IEEE,2015:495-500. [85]NOULAS A,SCELLATO S,LATHIA N,et al.A RandomWalk Around the City:New Venue Recommendation in Location-based Social Networks[C]//Conference on Privacy,Secu-rity,Risk and Trust and Social Computing.IEEE,2012:144-153. [86]BAGCI H,KARAGOZ P.Context-aware Friend Recommendation for Location Based Social Networks Using Random Walk[C]//Proceedings of Conference Companion on World Wide Web.2016:531-536. [87]HU L,JIAN S,CAO L,et al.Hers:Modeling Influential Contexts with Heterogeneous Relations for Sparse and Cold-start Recommendation [C]//Proceedings of AAAI Conference on Artificial Intelligence.2019:3830-3837. [88]GAO L,YANG H,WU J,et al.Recommendation with Multi-source Heterogeneous Information[C]//Proceedings of International Joint Conference on Artificial Intelligence.2018:3378-3384. [89]JIANG Z,LIU H,FU B,et al.Recommendation in Heteroge-neous Information Networks Based on Generalized Random Walk Model and Bayesian Personalized Ranking[C]//Proceedings of ACM Conference on Web Search and Data Mining.2018:288-296. [90]DONG Y,CHAWLA N V,SWAMI A.Metapath2vec:Scalable Representation Learning for Heterogeneous Networks[C]//Proceedings of ACM SIGKDD Conference on Knowledge Discovery and Data Mining.2017:135-144. [91]LI L L,LIU Z,WEI G M,et al.Cross-domin recommendation algorithm based on sharing knowledge pattern[J].Acta Electronica Sinica,2018,46(8):1947-1953. [92]ZHU F,WANG Y,CHEN C,et al.Cross-domain Recommendation:Challenges,Progress,and Prospects[C]//Proceedings of International Joint Conference on Artificial Intelligence.2021:4721-4728. [93]LI S,YAO L,MU S,et al.Debiasing Learning based Cross-domain Recommendation[C]//Proceedings of ACM SIGKDD Conference on Knowledge Discovery and Data Mining.2021:3190-3199. [94]HAO X,LIU Y,XIE R,et al.Adversarial Feature Translation for Multi-domain Recommendation[C]//Proceedings of ACM SIGKDD Conference on Knowledge Discoveryand Data Mining.2021:2964-2973. [95]ZHANG Y,CHEN X.Explainable Recommendation:A Survey and New Perspectives[J].arXiv:1804.11192,2018. [96]YAO L,CHU Z,LI S,et al.A Survey on Causal Inference[J].Transactions on Knowledge Discovery from Data,2021,15(5):74:1-74:46. [97]GUO R,CHENG L,LI J,et al.A Survey of Learning Causality with Data:Problems and Methods[J].ACM Computing Surveys(CSUR),2020,53(4):1-37. |
[1] | WANG Guan-yu, ZHONG Ting, FENG Yu, ZHOU Fan. Collaborative Filtering Recommendation Method Based on Vector Quantization Coding [J]. Computer Science, 2022, 49(9): 48-54. |
[2] | SUN Xiao-han, ZHANG Li. Collaborative Filtering Recommendation Algorithm Based on Rating Region Subspace [J]. Computer Science, 2022, 49(7): 50-56. |
[3] | CAI Xiao-juan, TAN Wen-an. Improved Collaborative Filtering Algorithm Combining Similarity and Trust [J]. Computer Science, 2022, 49(6A): 238-241. |
[4] | HE Yi-chen, MAO Yi-jun, XIE Xian-fen, GU Wan-rong. Matrix Transformation and Factorization Based on Graph Partitioning by Vertex Separator for Recommendation [J]. Computer Science, 2022, 49(6A): 272-279. |
[5] | GUO Liang, YANG Xing-yao, YU Jiong, HAN Chen, HUANG Zhong-hao. Hybrid Recommender System Based on Attention Mechanisms and Gating Network [J]. Computer Science, 2022, 49(6): 158-164. |
[6] | CHEN Zhuang, ZOU Hai-tao, ZHENG Shang, YU Hua-long, GAO Shang. Diversity Recommendation Algorithm Based on User Coverage and Rating Differences [J]. Computer Science, 2022, 49(5): 159-164. |
[7] | DONG Xiao-mei, WANG Rui, ZOU Xin-kai. Survey on Privacy Protection Solutions for Recommended Applications [J]. Computer Science, 2021, 48(9): 21-35. |
[8] | ZHAN Wan-jiang, HONG Zhi-lin, FANG Lu-ping, WU Zhe-fu, LYU Yue-hua. Collaborative Filtering Recommendation Algorithm Based on Adversarial Learning [J]. Computer Science, 2021, 48(7): 172-177. |
[9] | SHAO Chao, SONG Shu-mi. Collaborative Filtering Recommendation Algorithm Based on User Preference Under Trust Relationship [J]. Computer Science, 2021, 48(6A): 240-245. |
[10] | WU Jian-xin, ZHANG Zhi-hong. Collaborative Filtering Recommendation Algorithm Based on User Rating and Similarity of Explicit and Implicit Interest [J]. Computer Science, 2021, 48(5): 147-154. |
[11] | XIAO Shi-tao, SHAO Ying-xia, SONG Wei-ping, CUI Bin. Hybrid Score Function for Collaborative Filtering Recommendation [J]. Computer Science, 2021, 48(3): 113-118. |
[12] | HAO Zhi-feng, LIAO Xiang-cai, WEN Wen, CAI Rui-chu. Collaborative Filtering Recommendation Algorithm Based on Multi-context Information [J]. Computer Science, 2021, 48(3): 168-173. |
[13] | HAN Li-feng, CHEN Li. User Cold Start Recommendation Model Integrating User Attributes and Item Popularity [J]. Computer Science, 2021, 48(2): 114-120. |
[14] | LI Kang-lin, GU Tian-long, BIN Chen-zhong. Multi-space Interactive Collaborative Filtering Recommendation [J]. Computer Science, 2021, 48(12): 181-187. |
[15] | ZHU Yu-jie, LIU Hu-chen. Research on Multi-recommendation Fusion Algorithm of Online Shopping Platform [J]. Computer Science, 2021, 48(11A): 232-235. |
|