Computer Science ›› 2022, Vol. 49 ›› Issue (9): 14-32.doi: 10.11896/jsjkx.210700112
• Database & Big Data & Data Science • Previous Articles Next Articles
CHEN Zhi-qiang, HAN Meng, LI Mu-hang, WU Hong-xin, ZHANG Xi-long
CLC Number:
[1]DONGRE P B,MALIK L G.A review on real time data stream classification and adapting to various concept drift scenarios[C]//Proceedings of 2014 IEEE International Advance Computing Conference(IACC).Gurgaon:IEEE,2014:533-537. [2]MASSI MC,IEVA F,LETTIERI E.Data mining application to healthcare fraud detection:a two-step unsupervised clustering method for outlier detection with administrative databases[J].BMC Medical Informatics and Decision Making,2020,20(1):1-11. [3]FDEZ-RIVEROLA F,IGLESIAS E,DIAZ F,et al.Applying lazy learning algorithms to tackle concept drift in spam filtering[J].Expert Systems with Applications,2007,33(1):36-48. [4]AHMIM A,GHOUALMI-ZINE N.A new adaptive intrusiondetection system based on the intersection of two different classifiers[J].International Journal of Security and Networks,2014,9(3):125-132. [5]DEMERTZIS K,ILIADIS L,ANEZAKIS V.A Dynamic En-semble Learning Framework for Data Stream Analysis and Real-Time Threat Detection[C]//Proceedings of Artificial Neural Networks and Machine Learning(ICANN).Greece:Sprin-ger,2018:669-681. [6]DASH R,SAMAL S,DASH R,et al.An integrated TOPSIS crow search based classifier ensemble:In application to stock index price movement prediction[J].Applied Soft Computing,2019,85:105784. [7]DU S Y,HAN M,SHEN M Y,et al.Survey of Ensemble Classification Algorithms for Data Streams with Concept Drift[J].Computer Engineering,2020,46(1):15-24. [8]IWASHITA A S,PAPA J P.An Overview on Concept Drift Learning[J].IEEE Access,2018,7:1532-1547. [9]GAMA J,MEDAS P.Learning with Drift Detection[J].Ad-vances in Artificial Intelligence-SBIA,2004,3171:286-295. [10]BAENA-GARC M,CAMPO-ÁVILA J D,FIDALGO-MERINO R,et al.Early drift detection method[J].International Workshop on Knowledge Discovery from Data Streams,2006,6:77-86. [11]BIFET A,GAVALDÁ R.Learning from Time-Changing Datawith Adaptive Windowing[C]//Proceedings of the Seventh SIAM International Conference on Data Mining.Minneapolis:SIAM,2007:443-448. [12]NISHIDA K,YAMAUCHI K,OMORI T.ACE:Adaptive Classifiers-Ensemble System for Concept-Drifting Environments[C]//Proceedings of International Conference on Multiple Classifier Systems.Verlag:Springer,2005,176-185. [13]GOMES H M,BIFET A,READ J,et al.Adaptive random forests for evolving data stream classification[J].Machine Lear-ning,2017,106(9/10):1469-1495. [14]HULTEN G,SPENCER L,DOMINGOS P.Mining Time-Changing Data Streams[C]//Proceedings of the seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2001:97-106. [15]LIANG N,HUANG G,SARATCHANDRAN P,et al.A Fast and Accurate Online Sequential Learning Algorithm for Feedforward Networks[J].IEEE transactions on neural networks,2006,17(6):1411-1423. [16]STREET W N,KIM Y S.A streaming ensemble algorithm(SEA)for large-scale classification[C]//Proceedings of the Acm Sigkdd International Conference on Knowledge Discovery & Data Mining.New York:ACM,2001:377-382. [17]WANG H,YU P S,HAN J.Mining Concept-Drifting DataStreams[M]//Data Mining & Knowledge Discovery Handbook.2003:789-802. [18]KOLTER J Z,MALOOF M A.Dynamic weighted majority:anew ensemble method for tracking concept drift[C]//Procee-dings of the Third International IEEE Conference on Data Mining.Los Alamitos:IEEE Computer Society,2003:123-130. [19]WARES S,ISAACS J,ELYAN E.Data stream mining:methods and challenges for handling concept drift[J].SN Applied Sciences,2019,1(11):1412. [20]RAMIREZ-GALLEGO S,KRAWCZYK B,GARCIA S,et al.A survey on data preprocessing for data stream mining:Current status and future directions[J].Neurocomputing,2017,239:39-57. [21]GAMA J,LIOBAIT I,BIFET A,et al.A Survey on Concept Drift Adaptation[J].ACM Computing Surveys,2014,46(4):4410-4437. [22]KHAMASSI I,SAYED-MOUCHAWEH M,HAMMAMI M,et al.Discussion and review on evolving data streams and concept drift adapting[J].Evolving Systems,2016,9(1):1-23. [23]LU J,LIU A,DONG F,et al.Learning under Concept Drift:A Review[J].IEEE Transactions on Knowledge and Data Engineering,2020,31(12):2346-2363. [24]MINKU L,WHITE A,XIN Y.The Impact of Diversity on On-line Ensemble Learning in the Presence of Concept Drift[J].IEEE,2010,22(5):730-742. [25]TSYMBAL A.The Problem of Concept Drift:Definitions and Related Work[J/OL].Journal of Information Security.https://www.researchgate.net/publication/228723141. [26]DELANY S J,CUNNINGHAM P.A case-based technique for tracking concept drift in spam filtering[J].Knowledge-Based Systems,2004,18(4/5):187-195. [27]KRAWCZYK B,MINKU L L,GAMA J,et al.Ensemble lear-ning for data stream analysis:A survey[J].Information Fusion,2017,37:132-156. [28]OLIVEIRA G H F M,MINKU L L,OLIVEIRA A L I.GMM-VRD:A Gaussian Mixture Model for Dealing With Virtual and Real Concept Drifts[C]//Proceedings of International Joint Conference on Neural Networks(IJCNN).Budapest:IEEE,2019:1-8. [29]TSYMBAL A,PECHENIZKIY M,CUNNINGHAM P,et al.Handling Local Concept Drift with Dynamic Integration of Classifiers:Domain of Antibiotic Resistance in Nosocomial Infections[C]//Proceedings of 19th IEEE International Symposium on Computer-Based Medical Systems(CBMS).Salt Lake City:IEEE,2006:679-684. [30]KHAMASSI I,SAYED-MOUCHAWEH M,HAMMAMI M,et al.Self-Adaptive Windowing Approach for Handling Complex Concept Drift[J].Cognitive Computation,2015,7(6):772-790. [31]ŽLIOBAITE I,BUDKA M,STAHL F.Towards cost-sensitive adaptation:When is it worth updating your predictive model[J].Neurocomputing,2015,150:240-249. [32]REN S,LIAO B,ZHU W,et al.Knowledge-maximized ensemble algorithm for different types of concept drift[J].Information Sciences,2018,430/431:261-281. [33]HU H,KANTARDZIC M,SETHI T S.No Free Lunch Theorem for concept drift detection in streaming data classification:A review[J/OL].Wiley Interdisciplinary Reviews:Data Mining and KnowledgeDiscovery,https://doi.org/10.1002/widm.1327. [34]NISHIDA K,YAMAUCHI K.Detecting Concept Drift UsingStatistical Testing[M].Berlin:Springer:264-269. [35]MAHDI O A,PARDEDE E,ALI N,et al.Diversity measure asa new drift detection method in data streaming[J].Knowledge-Based Systems,2020,191:105227. [36]HUANG D T J,KOH Y S,DOBBIE G,et al.Detecting Volatility Shift in Data Streams[C]//Proceedings of IEEE International Conference on Data Mining(ICDM).Shenzhen:IEEE,2014:863-868. [37]PESARANGHADER A,VIKTOR H L.Fast Hoeffding DriftDetection Method for Evolving Data Streams[C]//Proceedings of Joint European Conference on Machine Learning and Know-ledge Discovery in Databases.2016:96-111. [38]PESARANGHADER A,VIKTOR H L.McDiarmid Drift Detection Methods for Evolving Data Streams[C]//Proceedings of 2018 International Joint Conference on Neural Networks.2018:1-9. [39]MINKU L L,YAO X.DDD:A New Ensemble Approach forDealing with Concept Drift[J].IEEE transactions on Knowledge and Data Engineering,2012,24(4):619-633. [40]SANTOS S G T D,GONÇALVES P M,SILVA G D D S,et al.Speeding Up Recovery from Concept Drifts[C]//Proceedings of Machine Learning and Knowledge Discovery in Databases-European Conference.Nancy:Springer,2014:179-194. [41]BARROS R S M D,GARRIDO T.DE CARVALHO SANTOS S,et al.A Boosting-like Online Learning Ensemble[C]//International Joint Conference on Neural Networks(IJCNN).Vancouver:IEEE,2016:1871-1878. [42]SUN Y,WANG Z,LIU H,et al.Online Ensemble Using Adaptive Windowing for Data Streams with Concept Drift[J].International Journal of Distributed Sensor Networks,2016,12(5):4218973. [43]FRIAS-BLANCO I,CAMPO-AVILA J D,RAMOS-JIMENEZG,et al.Online and Non-Parametric Drift Detection Methods Based on Hoeffding Bounds[J].IEEE Transactions on Know-ledge and Data Engineering,2015,27(3):810-823. [44]OZA N C.Online Bagging and Boosting[C]//Proceedings of 2005 IEEE International Conference on Systems,Man and Cybernetics.Waikoloa:IEEE,2005:2340-2345. [45]GAMA J,KOSINA P.Tracking Recurring Concepts with Meta-learners[C]//Proceedings of 14th Portuguese Conference on Artificial Intelligence.Aveiro:Springer,2009:423-434. [46]GAMA J,KOSINA P.Recurrent concepts in data streams classification[J].Knowledge and Information Systems,2014,40(3):489-507. [47]ANGEL A,JOĀO BÁRTOLO G,ERNESTINA M.Predictingrecurring concepts on data-streams by means of a meta-model and a fuzzy similarity function[J].Expert Systems with Applications,2016,46:87-105. [48]ANDERSON R,KOH Y S,DOBBIE G.CPF:Concept Profiling Framework for Recurring Drifts in Data Streams[M].Cham:Springer International Publishing,2016:203-214. [49]ANDERSON R,KOH Y S,DOBBIE G,et al.Recurring Concept Meta-learning for Evolving Data Streams[J].Expert Systems with Applications,2019,138:112832. [50]GONÇALVES J P M,BARROS R S M D.RCD:A recurringconcept drift framework[J].Pattern Recognition Letters,2013,34(9):1018-1025. [51]SAKTHITHASAN S,PEARS R,BIFET A,et al.Use of ensembles of Fourier spectra in capturing recurrent concepts in data streams[C]//Proceedings of International Joint Conference on Neural Networks.Killarney:IEEE,2015:1-8. [52]SRIPIRAKAS S,PEARS R.Mining Recurrent Concepts in Data Streams Using the Discrete Fourier Transform[J].Data Warehousing and Knowledge Discovery,2014,8646:439-451. [53]SIDHU P,BHATIA M P S.A two ensemble system to handle concept drifting data streams:recurring dynamic weighted majority[J].International Journal of Machine Learning and Cybernetics,2019,10(3):563-578. [54]GOMES J B,GABER M M,SOUSA P A C,et al.Mining Recurring Concepts in a Dynamic Feature Space[J].IEEE Transaction on Neural Networks and Learning Systems,2014,25(1):95-110. [55]HU J,CHEN J,QIN X.Algorithm of Recurring Concept Drift Base on Main Feature Extraction,2019[C]//Proceedings of the 2019 5th International Conference on Computing and Artificial Intelligence(ICCAI).Bali:ACM,2019:59-65. [56]ZHENG X,LI P,HU X,et al.Semi-supervised classification on data streams with recurring concept drift and concept evolution[J].Knowledge-Based Systems,2021,215:106749. [57]ALIPPI C,BORACCHI G,ROVERI M.An effective just-in-time adaptive classifier for gradual concept drifts[C]//Procee-dings of the 2011 International Joint Conference on Neural Networks(IJCNN).IEEE,2011:1675-1682. [58]LIU A,ZHANG G,JIE L.Fuzzy Time Windowing for Gradual Concept Drift Adaptation[C]//Proceedings of 2017 IEEE International Conference on Fuzzy Systems(FUZZ-IEEE).Naples:IEEE,2017:1-6. [59]ABDUALRHMAN M A A,PADMA M C.Deterministic Concept Drift Detection in Ensemble Classifier Based Data Stream Classification Process[J].International Journal of Grid and High Performance Computing,2019,11(1):29-48. [60]TSYMBAL A,PECHENIZKIY M,CUNNINGHAM P,et al.Dynamic integration of classifiers for handling concept drift[J].Information Fusion,2008,9(1):56-68. [61]GAMA J,CASTILLO G.Learning with Local Drift Detection[C]//Proceedings of Advanced Data Mining and Applications,Second International Conference(ADMA).Xi’an:Springer,2006:42-55. [62]IKONOMOVSKA E,GAMA J,SEBASTIAO R,et al.Regression trees from data streams with drift detection[C]//Procee-dings of Discovery Science,12th International Conference.Porto:Springer,2009:121-135. [63]SHAKER A,LUGHOFER E.Self-adaptive and local strategies for a smooth treatment of drifts in data streams[J].EvolvingSystems,2014,5(4):239-257. [64]LIU A,SONG F,ZHANG G,et al.Regional Concept Drift Detection and Density Synchronized Drift Adaptation[C]//Proceedings of Twenty-Sixth International Joint Conference on Artificial Intelligence.2017:2280-2286. [65]LIU A J,LU J.Accumulating regional density dissimilarity for concept drift detection in data streams[J].Pattern Recognition,2018(76):256-272. [66]LIU A,LU J,ZHANG G.Diverse Instance-Weighting Ensemble Based on Region Drift Disagreement for Concept Drift Adaptation[J].IEEE Transactions on Neural Networks and Learning Systems,2021,32(1):293-307. [67]OLIVEIRA L S,BATISTA G E.Igmm-cd:a gaussian mixture classification algorithm for data streams with concept drifts[C]//Proceedings of BRACIS,2015 Brazilian Conference on Intelligent Systems(BRACIS).IEEE,2015:55-61. [68]ALMEIDA P R,OLIVEIRA L S,BRITTO A S,et al.Adapting dynamic classifier selection for concept drift[J].Expert Systems with Applications,2018,104:67-85. [69]GZÜAK M,CAN F.Concept learning using one-class classifiers for implicit drift detection in evolving data streams[J].Artificial Intelligence Review,2020(3):1-23. [70]YAN M M W.Accurate detecting concept drift in evolving data streams[J].ICT Express,2020,6(4):332-338. [71]MICEVSKA S,AWAD A,SAKR S.SDDM:an interpretablestatistical concept drift detection method for data streams[J].Journal of Intelligent Information Systems,2021,56:459-484. [72]MUSEBA T,NELWAMONDO F,OUAHADA K,et al.Recurrent Adaptive Classifier Ensemble for Handling Recurring Concept Drifts[J].Applied Computational Intelligence and Soft Computing,2021,13:5533777. [73]GOEL K,BATRA S.Dynamically updated diversified ensemble-based approach for handling concept drift[J].Turkish Journal of Electrical Engineering & Computer Sciences,2020,28(1):556-574. [74]REIS D,FLACH P,MATWIN S,et al.Fast Unsupervised Online Drift Detection Using Incremental Kolmogorov-Smirnov Test[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.San Francisco:ACM,2016:1545-1554. [75]VERDECIA-CABRERA A,BLANCO I F,CARVALHO A C P L.An online adaptive classifier ensemble for mining non-stationa-ry data streams[J].Intelligent Data Analysis,2018,22(4):787-806. [76]DONG F,LU J,ZHANG G,et al.Active Fuzzy Weighting Ensemble for Dealing with Concept Drift[J].International Journal of Computational Intelligence Systems,2018,11(1):438. [77]ZHANG B,CHEN Y,XUE L.Research on Concept-DriftingData Stream Based on Fuzzy Integral Ensemble Classifier System[C]//Proceedings of Communications,Signal Processing,and Systems.Singapore:Springer,2019:225-232. [78]MONTIEL J,MITCHELL R,FRANK E,et al.Adaptive XG-Boost for Evolving Data Streams[C]//Proceedings of 2020 International Joint Conference on Neural Networks(IJCNN).Glasgow:IEEE,2020:1-8. [79]ABDULSALAM H,SKILLICORN D B,MARTIN P.Streaming Random Forests[C]//Proceedings of Eleventh International Database Engineering and Applications Symposium(IDEAS 2007).Banff:IEEE Computer Society,2007:22-36. [80]ABDULSALAM H,SKILLICORN D B,MARTIN P.Classif-ying Evolving Data Streams UsingDynamic Streaming Random Forests[C]//Proceedings of Database and Expert Systems Applications,19th International Conference.Turin:Springer,2008:643-651. [81]GOMES H M,BIFET A,READ J,et al.Adaptive random fo-rests for evolving data stream classification[J].Machine Lear-ning,2017,106(9/10):1469-1495. [82]HO T K.The random subspace method for constructing decision forests[J].IEEE transactions on Pattern Analysisand Machine Intelligence,1998,20(8):832-844. [83]LUONG A V,NGUYEN T T,LIEW A W.Streaming Active Deep Forest for Evolving Data Stream Classification[J].arXiv:2002.11816,2020. [84]ZHOU Z H,FENG J.Deep Forest:Towards An Alternative to Deep Neural Networks[C]//Proceedings of Twenty-Sixth International Joint Conference on Artificial Intelligence.Melbourne:ijcai,2017:3553-3559. [85]HAQUE A,KHAN L,BARON M,et al.SAND:semi-super-vised adaptive novel class detection and classification over data stream[C]//Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence.Phoenix:AAAI Press,2016:1652-1658. [86]HAQUE A,KHAN L,BARON M,et al.Efficient handling of concept drift and concept evolution over Stream Data[C]//Proceedings of Efficient Handling of Concept Drift and Concept Evolution Over Stream Data.Helsinki:IEEE,2016:481-492. [87]ZLIOBAITE I.Change with Delayed Labeling:When is it Detectable?[C]//Proceedings of The 10th IEEE International Conference on Data Mining Workshops.Sydney:IEEE,2010:843-850. [88]RAAB C,HEUSINGER M,SCHLEIF F.Reactive Soft Prototype Computing for Concept Drift Streams[J].Neurocompu-ting,2020,416:340-351. [89]YUAN Y,WANG Z,WANG W.Unsupervised concept drift detection based on multi-scale slide windows[J].Ad Hoc Networks,2021,111:102325. [90]DU L,SONG Q,ZHU L,et al.A Selective Detector Ensemble for Concept Drift Detection[J].The Computer Journal,2015,58(3):457-471. [91]HU H,KANTARDZIC M,LYU L.Detecting Different Types of Concept Drifts with Ensemble Framework[C]//Proceedings of 17th IEEE International Conference on Machine Learning and Applications.Orlando:IEEE,2018:344-350. [92]KORYCKI L,KRAWCZYK B.Unsupervised Drift Detector Ensembles for Data Stream Mining[C]//Proceedings of 2019 IEEE International Conference on Data Science and Advanced Analy-tics.Washington:IEEE,2019:317-325. [93]LI Y,LI D,WANG S,et al.Incremental entropy-based clustering on categorical data streams with concept drift[J].Know-ledge-Based Systems,2014,59(1):33-47. [94]BAI L,CHENG X,LIANG J,et al.An optimization model for clustering categorical data streams with drifting concepts[J].IEEE Trans.Knowl.Data Eng.2016,28(11):2871-2883. [95]KATAKIS I,TSOUMAKAS G,VLAHAVAS I.Tracking recurring contexts using ensemble classifiers:an application to email filtering[J].Knowledge and Information Systems,2010,22(3):371-391. [96]XU S,FENG L,LIU S,et al.Self-adaption neighborhood density clustering method for mixed data stream with concept drift[J].Engineering Applications of Artificial Intelligence,2020,89:103451. [97]MUSEBA T,NELWAMONDO F,OUAHADA K.ADES:ANew Ensemble Diversity-Based Approach for Handling Concept Drift[J].Mobile Information Systems,2021,2021(4):1-17. [98]DOMINGOS P,HULTEN G.Mining high-speed data streams,2000[C]//Proceedings of the sixth ACM SIGKDD International Conferenceon Knowledge Discovery and Data Mining.Boston:ACM,2000:71-80. [99]BLAKE C,NTOUTSI E.Reinforcement Learning Based Decision Tree Induction Over Data Streams with Concept Drifts,2018[C]//Proceedings of Reinforcement Learning Based Decision Tree Induction Over Data Streams with Concept Drifts.Singapore:IEEE,2018:328-335. [100]JANKOWSKI D,JACKOWSKI K.An Increment Decision Tree Algorithm for Streamed Data[C]//Proceedings of 2015 IEEE TrustCom/BigDataSE/ISPA.Helsinki:IEEE,2015:199-204. [101]JANKOWSKI D,JACKOWSKI K,CYGANEK B.Learning Decision Trees from Data Streams with Concept Drift[J].Procedia Computer Science,2016,80:1682-1691. [102]COSTA T,GUILHERME V.Strict Very Fast Decision Tree:a memory conservative algorithm for data stream mining[J].Pattern Recognition Letters,2018,116(1):22-28. [103]BIFET A,ZHANG J,FAN W,et al.Extremely Fast Decision Tree Mining for Evolving Data Streams[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.Halifax:ACM,2017:1733-1742. [104]KRAWCZYK B,WOZNIAK M.Weighted Naive Bayes Classi-fier with Forgetting for Drifting Data Streams[C]//Proceedings of 2015 IEEE International Conference on Systems,Man,and Cybernetics(SMC).Hong Kong:IEEE,2015:2147-2152. [105]ZHAO Q,KLAUE C,LAI C.Predicting concept drift viadynamic NaÏve Bayes[C]//Proceedings of 2017 IEEE International Conference on Big Data.Boston:IEEE,2017:2420-2425. [106]LIU A,ZHANG G.Fast Switch NaÏve Bayes to Avoid Redundant Update for Concept Drift Learning[C]//Proceedings of 2020 International Joint Conference on Neural Networks(IJCNN).Glasgow:IEEE,2020:1-7. [107]KISHORE B D,RAMADEVI Y,RAMANA K V.RGNBC:Rough Gaussian NaÏve Bayes Classifier for Data Stream Classification with Recurring Concept Drift[J].Arabian Journal for Science and Engineering,2016,42(2):705-714. [108]BABU D K,RAMADEVI Y,RAMANA K V.PGNBC:Pearson Gaussian NaÏve Bayes classifier for data stream classification with recurring concept drift[J].Intelligent Data Analysis,2017,21(5):1173-1191. [109]SYED N,LIU H,SUNG K.Handling concept drifts in incremental learning with support vector machines[C]//Proceedings of the Fifth ACM SIGKDD International Conference on Know-ledge Discovery and Data Mining.San Diego:ACM,1999:317-321. [110]RUPING S.Incremental Learning with Support Vector Ma-chines[C]//Proceedings of the 2001 IEEE International Conference on Data Mining.San Jose:IEEE,2001:641-642. [111]YALCIN A,ERDEM Z,GURGEN F.Ensemble based incremental SVM classifiers for changing environments[C]//Proceedings of 2007 22nd International Symposium on Computer and Information Sciences.Ankara:IEEE,2007. [112]AYAD O.Learning under Concept Drift with Support Vector Machines[C]//Proceedings of 24th International Conference on Artificial Neural Networks.Hamburg:Springer,2014:587-594. [113]ZAREMOODIP,SIAHROUDI S K,BEIGY H.A support vector based approach for classification beyond the learned label space in data streams[C]//Proceedings of the 31st Annual ACM Symposium on Applied Computing.Pisa:ACM,2016:910-915. [114]ZHU Q Y,SIEW C K.Extreme Learning Machine:A NewLearning Scheme of Feedforward Neural Networks[J].Neurocomputing,2006,70:489-501. [115]LIANG N,HUANG G,SARATCHANDRAN P,et al.A Fast and Accurate Online Sequential Learning Algorithm for Feedforward Networks[J].IEEE Transactionson Neural Networks,2006,17(6):1411-1423. [116]XU S L,B J W A.A fast incremental extreme learning machine algorithm for data streams classification[J].Expert Systems with Applications,2016,65:332-344. [117]ZHAI J,WANG J G.Ensemble online sequential extremelearning machine for large data set classification[C]//Procee-dings of 2014 IEEE International Conference on Systems,Man,and Cybernetics(SMC).San Diego:IEEE,2014:2250-2255. [118]LAN Y,SOH Y C,HUANG G.Ensemble of online sequential extreme learning machine[J].Neurocomputing,2009,72(13/14/15):3391-3395. [119]XU S,WANG J.Dynamic extreme learning machine for data stream classification[J].Neurocomputing,2017,238:433-449. [120]LIU D,WU Y X,JIANG H.FP-ELM:An online sequential learning algorithm for dealing with concept drift[J].Neurocomputing,2016,207:322-334. [121]DA SILVA C A S,KROHLING R A.Semi-Supervised Online Elastic Extreme Learning Machine with Forgetting Parameter to deal with concept drift in data streams[C]//Proceedings of International Joint Conference on Neural Networks.Budapest:IEEE,2019:1-8. [122]PRATAMA M,LU J,LUGHOFER E,et al.An Incremental Learning of Concept Drifts Using Evolving Type-2 Recurrent Fuzzy Neural Networks[J].IEEE Transactions on Fuzzy Systems,2017,25(5):1175-1192. [123]LOBO J L,BAI L,JAVIER D S,et al.Evolving Spiking Neural Networks for online learning over drifting data streams[J].Neural Networks,2018,108:1-19. [124]ANDRADE S J D,HRUSCHKA E R,GAMA J.An evolutiona-ry algorithm for clustering data streams with a variable number of clusters[J].Expert Systems with Applications,2017,67:228-238. [125]BAHRI M,MANIU S,BIFET A.A Sketch-Based Naive Bayes Algorithms for Evolving Data Streams[C]//Proceedings of 2018 IEEE International Conference on Big Data.Seattle:IEEE,2018:604-613. [126]LOSING V,HAMMER B,WERSING H.KNN Classifier with Self Adjusting Memory for Heterogeneous Concept Drift,2016[C]//Proceedings of IEEE 16th International Conference on Data Mining.Barcelona:IEEE,2016:291-300. [127]TENNANT M,STAHL F,RANA O,et al.Scalable real-time classification of data streams with concept drift[J].Future Gene-ration Computer Systems,2017,75:187-199. [128]BRZEZINSKI D,STEFANOWSKI J.Accuracy Updated Ensemble for Data Streams with Concept Drift[C]//Proceedings of International Conference on Hybrid Artificial Intelligent Systems.Wroclaw:Springer,2011:153-160. [129]BRZEZINSKI D,STEFANOWSKI J.Reacting to DifferentTypes of Concept Drift:The Accuracy Updated Ensemble Algorithm[J].IEEE Transactions on Neural Networks and Learning Systems,2014,25(1):81-94. [130]ELWELL R,POLIKAR R.Incremental Learning of ConceptDrift in Nonstationary Environments[J].IEEE Transactions on Neural Networks,2011,22(10):1517-1531. [131]LI Z,HUANG W,XIONG Y,et al.Incremental learning imba-lanceddata streams with concept drift:The dynamic updated ensemble algorithm[J].Knowledge-Based Systems,2020,195:105694. [132]KLIKOWSKI J,WOZ'NIAK M.Multi Sampling Random Subspace Ensemble for Imbalanced Data Stream Classification[C]//Proceedings of International Conference on Computer Recognition Systems.Polanica-Zdrój:Springer,2019:360-369. [133]WOZNIAK M,KSIENIEWICZ P,CYGANEK B,et al.ActiveLearning Classification of Drifted Streaming Data[J].Procedia Computer Science,2016,80(C):1724-1733. [134]JACKOWSKI K.New diversity measure for data stream classification ensembles[J].Engineering Applications of Artificial Intelligence,2018,74:23-34. [135]BERTINI J J R,NICOLETTI M D C.An iterative boosting-based ensemble for streaming data classification[J].Information Fusion,2019,45:66-78. [136]REN S,LIAO B,ZHU W,et al.The Gradual Resampling Ensemble for mining imbalanced data streams with concept drift[J].Neurocomputing,2018,286:150-166. [137]DUDA P.On Ensemble Components Selection in Data Streams Scenario with Gradual Concept-Drift[C]//Proceedings of 17th Artificial Intelligence and Soft Computing International Confe-rence.Zakopane:Springer,2018:311-320. [138]BERTINI J J R.A Discretization-based Ensemble LearningMethod for Classification in High-Speed Data Streams[C]//Proceedings of International Joint Conference on Neural Networks.Budapest:IEEE,2019:1-8. [139]BACH S H,MALOOF M A.Paired Learners for Concept Drift[C]//Proceedings of the 8th IEEE International Conference on Data Mining.Pisa:IEEE,2008:23-32. [140]BRZEZINSKI D,STEFANOWSKI J.Combining block-basedand online methods in learning ensembles from concept drifting data streams[J].Information Sciences,2014,265:50-67. [141]JABER G,CORNUÉJOLS A,TARROUX P.A New On-Line Learning Method for Coping with Recurring Concepts:The ADACC System[C]//Proceedings of Neural Information Processing-20th International Conference.Daegu:Springer,2013:595-604. [142]KRAWCZYK B,CANO A.Online ensemble learning with abstaining classifiers for drifting and noisy data streams[J].Applied Soft Computing,2018,68:677-692. [143]ZHANG H,LIU W,SHAN J,et al.Online Active LearningPaired Ensemble for Concept Drift and Class Imbalance[J].IEEE Access,2018,6:73815-73828. [144]SIDHU P,SIDHU P,BHATIA M P S,et al.A novel online ensemble approach to handle concept drifting data streams:diversified dynamic weighted majority[J].International Journal of Machine Learning and Cybernetics,2018,9(1):37-61. [145]OLORUNNIMBE M K,VIKTOR H L,PAQUET E.Dynamic adaptation of online ensembles for drifting data streams[J].Journal of IntelligentInformation Systems,2018,50(2):291-313. [146]GHOMESHI H,GABER M M,KOVALCHUK Y.A non-canonical hybrid metaheuristic approach to adaptive data stream classification[J].Future Generation Computer Systems,2020,102:127-139. [147]SHAN J,ZHANG H,LIU W,et al.Online Active Learning Ensemble Framework for Drifted Data Streams[J].IEEE Transactions on Neural Networks and Learning Systems,2019,30(2):486-498. [148]YANG L,CHEUNG Y M,YUAN Y T.Adaptive Chunk-Based Dynamic Weighted Majority for Imbalanced Data Streams With Concept Drift[J].IEEE Transactions on Neural Networks and Learning Systems,2020,31(8):2764-2778. [149]CANO A,KRAWCZYK B.Kappa Updated Ensemble for Drifting Data Stream Mining[J].Machine Learning,2020,109(1):175-218. [150]SCHOLZ M,KLINKENBERG R.An ensemble classifier fordrifting concepts[C]//Proceedings of the Second International Workshop on Knowledge Discovery from Data Streams(IWKDDS’05).2005:53-64. |
[1] | ZHOU Xu, QIAN Sheng-sheng, LI Zhang-ming, FANG Quan, XU Chang-sheng. Dual Variational Multi-modal Attention Network for Incomplete Social Event Classification [J]. Computer Science, 2022, 49(9): 132-138. |
[2] | HAO Zhi-rong, CHEN Long, HUANG Jia-cheng. Class Discriminative Universal Adversarial Attack for Text Classification [J]. Computer Science, 2022, 49(8): 323-329. |
[3] | WU Hong-xin, HAN Meng, CHEN Zhi-qiang, ZHANG Xi-long, LI Mu-hang. Survey of Multi-label Classification Based on Supervised and Semi-supervised Learning [J]. Computer Science, 2022, 49(8): 12-25. |
[4] | LI Xia, MA Qian, BAI Mei, WANG Xi-te, LI Guan-yu, NING Bo. RIIM:Real-Time Imputation Based on Individual Models [J]. Computer Science, 2022, 49(8): 56-63. |
[5] | TAN Ying-ying, WANG Jun-li, ZHANG Chao-bo. Review of Text Classification Methods Based on Graph Convolutional Network [J]. Computer Science, 2022, 49(8): 205-216. |
[6] | YAN Jia-dan, JIA Cai-yan. Text Classification Method Based on Information Fusion of Dual-graph Neural Network [J]. Computer Science, 2022, 49(8): 230-236. |
[7] | CHEN Yuan-yuan, WANG Zhi-hai. Concept Drift Detection Method for Multidimensional Data Stream Based on Clustering Partition [J]. Computer Science, 2022, 49(7): 25-30. |
[8] | GAO Zhen-zhuo, WANG Zhi-hai, LIU Hai-yang. Random Shapelet Forest Algorithm Embedded with Canonical Time Series Features [J]. Computer Science, 2022, 49(7): 40-49. |
[9] | YANG Bing-xin, GUO Yan-rong, HAO Shi-jie, Hong Ri-chang. Application of Graph Neural Network Based on Data Augmentation and Model Ensemble in Depression Recognition [J]. Computer Science, 2022, 49(7): 57-63. |
[10] | ZHANG Hong-bo, DONG Li-jia, PAN Yu-biao, HSIAO Tsung-chih, ZHANG Hui-zhen, DU Ji-xiang. Survey on Action Quality Assessment Methods in Video Understanding [J]. Computer Science, 2022, 49(7): 79-88. |
[11] | SHAO Xin-xin. TI-FastText Automatic Goods Classification Algorithm [J]. Computer Science, 2022, 49(6A): 206-210. |
[12] | CHEN Jing-nian. Acceleration of SVM for Multi-class Classification [J]. Computer Science, 2022, 49(6A): 297-300. |
[13] | YANG Jian-nan, ZHANG Fan. Classification Method for Small Crops Combining Dual Attention Mechanisms and Hierarchical Network Structure [J]. Computer Science, 2022, 49(6A): 353-357. |
[14] | YANG Han, WAN You, CAI Jie-xuan, FANG Ming-yu, WU Zhuo-chao, JIN Yang, QIAN Wei-xing. Pedestrian Navigation Method Based on Virtual Inertial Measurement Unit Assisted by GaitClassification [J]. Computer Science, 2022, 49(6A): 759-763. |
[15] | HUANG Pu, SHEN Yang-yang, DU Xu-ran, YANG Zhang-jing. Face Recognition Based on Locality Constrained Feature Line Representation [J]. Computer Science, 2022, 49(6A): 429-433. |
|