Computer Science ›› 2025, Vol. 52 ›› Issue (6): 187-199.doi: 10.11896/jsjkx.241100190

• Computer Graphics & Multimedia • Previous Articles     Next Articles

PRNU Fingerprint Purification Algorithm for Open Environment

LIU Yufei, XIAO Yanhui, TIAN Huawei   

  1. School of National Security,People's Public Security University of China,Beijing 100038,China
  • Received:2024-11-29 Revised:2025-02-16 Online:2025-06-15 Published:2025-06-11
  • About author:LIU Yufei,born in 1999,postgraduate,is a member of CCF(No.U9221G).His main research interest include multimedia forensics.
    XIAO Yanhui,born in 1984,Ph.D,associated professor,Ph.D supervisor.His main research interest is multimedia forensics.
  • Supported by:
    Ministry of Public Security Science and Technology Plan Technical Research Project(2022JSYJC22).

Abstract: Non-unique artifacts(NUAs) noise generated by digital image post-processing pipeline is mixed in unique and stable photo response non-uniformity(PRNU) fingerprints.It seriously affects the precision of the downstream source camera identification(SCI) task.However,existing NUAs suppression schemes mainly target experimental environments and require not only additional hyperparameter settings,but also additional computing resources and storage space,which are difficult to apply in open environments.To solve this problem,this paper proposes a PRNU fingerprint purification algorithm for open environments.Firstly,it improves the existing PRNU fingerprint correlation metric peak-to-correlation energy ratio(PCE) and proposes PCE_norm and PCE_denuas based on normalization to achieve adaptive correlation measurement in open environment.Then,NUAs offline suppression is realized by constructing a contrastive learning mechanism to reduce the distance of the same fingerprint and amplify different fingerprints,so that there is no need for additional computation and storage costs for online suppression in SCI tasks.Finally,experiments on Dresden and Daxing datasets demonstrate the effectiveness and robustness of the proposed algorithm.

Key words: Source camera identification, PRNU fingerprint, NUAs noise, Correlation metric, Contrastive learning, Purification algorithm

CLC Number: 

  • TP391
[1]GAO C F,XIAO Y H,TIAN H W.Image camera fingerprint extraction algorithm based on MPRNet[J].Netinfo Security,2022,22(10):15-23.
[2]MANI R G,PARTHASARATHY R,ESWARAN S,et al.Asurvey on digital image forensics:Metadata and image forgeries[C]//Workshop on Applied Computing.2022:22-55.
[3]LUKAS J,FRIDRICH J,GOLJAN M.Digital camera identification from sensor pattern noise[J].IEEE Transactions on Information Forensics and Security,2006,1(2):205-214.
[4]JIANG X,WEI S K,ZHAO R Z,et al.Survey of imaging device source identification[J].Journal of Beijing Jiaotong University,2019,43(2):48-57.
[5]VALSESIA D,COLUCCIA G,BIANCHI T,et al.User Authentication via PRNU-Based Physical Unclonable Functions[J].IEEE Transactions on Information Forensics and Security,2017,12(8):1941-1956.
[6]BA Z,PIAO S,FU X,et al.ABC:Enabling Smartphone Authentication with Built-in Camera[C]//Proceedings of the Network and Distributed System Security Symposium.2018.
[7]MOHANTY M,ZHANG M,ASGHAR M R,et al.e-PRNU:Encrypted Domain PRNU-Based Camera Attribution for Preserving Privacy[J].IEEE Transactions on Dependable and Secure Computing,2021,18(1):426-437.
[8]KORUS P,MEMON N.Computational Sensor Fingerprints[J].IEEE Transactions on Information Forensics and Security,2022,17:2508-2523.
[9]LIU L,FU X,CHEN X,et al.FITS:Matching camera fingerprints subject to software noise pollution[C]//Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security.New York:ACM,2023:1660-1674.
[10]MONTIBELLER A,PÉREZ-GONZÁLEZ F.An adaptive methodfor camera attribution under complex radial distortion corrections[J].IEEE Transactions on Information Forensics and Security,2023,19:385-400.
[11]GUPTA B,TIWARI M.Improving performance of source-ca-mera identification by suppressing peaks and eliminating low-frequency defects of reference SPN[J].IEEE Signal Processing Letters,2018,25(9):1340-1343.
[12]CHEN M,FRIDRICH J,GOLJAN M,et al.Determining image origin and integrity using sensor noise[J].IEEE Transactions on Information Forensics and Security,2008,3(1):74-90.
[13]LIN X,LI C T.Preprocessing reference sensor pattern noise via spectrum equalization[J].IEEE Transactions on Information Forensics and Security,2015,11(1):126-140.
[14]RAO Q,WANG J.Suppressing random artifacts in referencesensor pattern noise via decorrelation[J].IEEE Signal Proces-sing Letters,2017,24(6):809-813.
[15]ALBISANI C,IULIANI M,PIVA A.Checking PRNU Usability on modern devices[C]//ICASSP 2021-2021 IEEE International Conference on Acoustics,Speech and Signal Processing.IEEE,2021:2535-2539
[16]BHAT N N,BIANCHI T.Investigating inconsistencies in prnu-based camera identification[C]//Proceedings of 2022 IEEE International Conference on Image Processing.IEEE,2022:851-855.
[17]GOLJAN M.Digital camera identification from images-estimating false acceptance probability[C]//International workshop on digital watermarking.Berlin:Springer,2008:454-468.
[18]KANG X,LI Y,QU Z,et al.Enhancing source camera identification performance with a camera reference phase sensor pattern noise[J].IEEE Transactions on Information Forensics and Security,2011,7(2):393-402.
[19]LE-KHAC P H,HEALY G,SMEATON A F.Contrastive representation learning:A framework and review[J].IEEE Access,2020,8:193907-193934.
[20]HE K,FAN H,WU Y,et al.Momentum contrast for unsupervised visual representation learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.IEEE,2020:9726-9735.
[21]GAO T,YAO X,CHEN D.Simcse:Simple contrastive learning of sentence embeddings[J].arXiv:2104.08821,2021.
[22]SHEN D,ZHAO Y,QUAN C.Identity-Referenced DeepfakeDetection with Contrastive Learning[C]//Proceedings of the 2022 ACM Workshop on Information Hiding and Multimedia Security.New York:ACM,2022:27-32.
[23]ZHENG J,ZHOU Y,HU X,et al.Deepfake Detection withCombined Unsupervised-Supervised Contrastive Learning[C]//2024 IEEE International Conference on Image Processing.IEEE,2024:787-793.
[24]QIAO T,XIE S,CHEN Y,et al.Fully Unsupervised Deepfake Video Detection Via Enhanced Contrastive Learning[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2024,46(7):4654-4668.
[25]LIU X,YU Y,LI X,et al.MCL:Multimodal Contrastive Learning for Deepfake Detection[J].IEEE Transactions on Circuits and Systems for Video Technology,2024,34(4):2803-2813.
[26]ZHU Y,ZHANG C,GAO J,et al.High-compressed deepfake video detection with contrastive spatiotemporal distillation[J].Neurocomputing,2024,565:126872.
[27]COZZOLINO D,VERDOLIVA L.Noiseprint:A CNN-BasedCamera Model Fingerprint[J].IEEE Transactions on Information Forensics and Security,2020,15:144-159.
[28]KALANTIDIS Y,SARIYILDIZ M B,PION N,et al.Hard negative mixing for contrastive learning[J].Advances in Neural Information Processing Systems,2020,33:21798-21809.
[29]TIAN Y,KRISHNAN D,ISOLA P.Contrastive multiview co-ding[C]//European Conference on Computer Vision.Cham:Springer,2020:776-794.
[30]CHEN X,FAN H,GIRSHICK R,et al.Improved baselines with momentum contrastive learning[J].arXiv:200304297,2020.
[31]GIDARIS S,BURSUC A,PUY G,et al.Obow:Online bag-of-visual-words generation for self-supervised learning[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition.IEEE,2021:6826-6836.
[32]LIN X,LI C T.On constructing A better correlation predictor for PRNU-based image forgery localization[C]//Proceedings of 2021 IEEE International Conference on Multimedia and Expo.IEEE,2021:1-6.
[33]FERNÁNDEZ-MENDUIÑA S,PÉREZ-GONZÁLEZ F.On the information leakage quantification of camera fingerprint estimates[J].EURASIP Journal on Information Security,2021(1).
[34]PÉREZ-GONZÁLEZ F,FERNÁNDEZ-MENDUIÑA S.PRNU- leaks:Facts and remedies[C]//Proceedings of 2020 28th European Signal Processing Conference.2021:720-724.
[35]TIAN H,XIAO Y,CAO G,et al.Daxing smartphone identification dataset[J].IEEE Access,2019,7:101046-101053.
[36]AKBARI Y,ALMAADEED N,AL-MAADEED S,et al.PRNU-Net:A deep learning approach for source camera model identification based on videos taken with smartphone[C]//Proceedings of 2022 26th International Conference on Pattern Recognition.2022:599-605.
[37]ULYANOV D,VEDALDI A,LEMPITSKY V.Deep image prior[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.IEEE,2018:9446-9454.
[38]CHEN M,FRIDRICH J,GOLJAN M,et al.Source digital camcorder identification using sensor photo response non-uniformity[C]//Security,Steganography,and Watermarking of Multimedia Contents IX.2007:517-528.
[39]GLOE T,BÖHME R.The Dresden Image Database for benchmarking digital image forensics[C]//Proceedings of the 2010 ACM symposium on applied computing.New York:ACM,2010:1584-1590.
[40]XIAO Y,TIAN H,CAO G,et al.Effective PRNU extraction via densely connected hierarchical network[J].Multimedia Tools and Applications,2022,81(15):20443-20463.
[41]BERTINI F,SHARMA R,MONTESI D.Are social networks watermarking us or are we(unawarely) watermarking ourself?[J].Journal of Imaging,2022,8(5):132.
[1] YE Jiale, PU Yuanyuan, ZHAO Zhengpeng, FENG Jue, ZHOU Lianmin, GU Jinjing. Multi-view CLIP and Hybrid Contrastive Learning for Multimodal Image-Text Sentiment Analysis [J]. Computer Science, 2025, 52(6A): 240700060-7.
[2] FU Shufan, WANG Zhongqing, JIANG Xiaotong. Zero-shot Stance Detection in Chinese by Fusion of Emotion Lexicon and Graph ContrastiveLearning [J]. Computer Science, 2025, 52(6A): 240500051-7.
[3] LI Jianghui, DING Haiyan, LI Weihua. Prediction of Influenza A Antigenicity Based on Few-shot Contrastive Learning [J]. Computer Science, 2025, 52(6A): 240800053-6.
[4] CHEN Yadang, GAO Yuxuan, LU Chuhan, CHE Xun. Saliency Mask Mixup for Few-shot Image Classification [J]. Computer Science, 2025, 52(6): 256-263.
[5] WU Pengyuan, FANG Wei. Study on Graph Collaborative Filtering Model Based on FeatureNet Contrastive Learning [J]. Computer Science, 2025, 52(5): 139-148.
[6] MIAO Zhuang, CUI Haoran, ZHANG Qiyang, WANG Jiabao, LI Yang. Restoration of Atmospheric Turbulence-degraded Images Based on Contrastive Learning [J]. Computer Science, 2025, 52(5): 171-178.
[7] TIAN Qing, KANG Lulu, ZHOU Liangyu. Class-incremental Source-free Domain Adaptation Based on Multi-prototype Replay andAlignment [J]. Computer Science, 2025, 52(3): 206-213.
[8] YUAN Ye, CHEN Ming, WU Anbiao, WANG Yishu. Graph Anomaly Detection Model Based on Personalized PageRank and Contrastive Learning [J]. Computer Science, 2025, 52(2): 80-90.
[9] LIU Yanlun, XIAO Zheng, NIE Zhenyu, LE Yuquan, LI Kenli. Case Element Association with Evidence Extraction for Adjudication Assistance [J]. Computer Science, 2025, 52(2): 222-230.
[10] YE Lishuo, HE Zhixue. Multi-granularity Time Series Contrastive Learning Method Incorporating Time-Frequency Features [J]. Computer Science, 2025, 52(1): 170-182.
[11] TIAN Sicheng, HUANG Shaobin, WANG Rui, LI Rongsheng, DU Zhijuan. Contrastive Learning-based Prompt Generation Method for Large-scale Language Model ReverseDictionary Task [J]. Computer Science, 2024, 51(8): 256-262.
[12] HU Haibo, YANG Dan, NIE Tiezheng, KOU Yue. Graph Contrastive Learning Incorporating Multi-influence and Preference for Social Recommendation [J]. Computer Science, 2024, 51(7): 146-155.
[13] TIAN Qing, LU Zhanghu, YANG Hong. Unsupervised Domain Adaptation Based on Entropy Filtering and Class Centroid Optimization [J]. Computer Science, 2024, 51(7): 345-353.
[14] YU Bihui, TAN Shuyue, WEI Jingxuan, SUN Linzhuang, BU Liping, ZHAO Yiman. Vision-enhanced Multimodal Named Entity Recognition Based on Contrastive Learning [J]. Computer Science, 2024, 51(6): 198-205.
[15] LI Yilin, SUN Chengsheng, LUO Lin, JU Shenggen. Aspect-based Sentiment Classification for Word Information Enhancement Based on Sentence Information [J]. Computer Science, 2024, 51(6): 299-308.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!