Computer Science ›› 2025, Vol. 52 ›› Issue (6): 187-199.doi: 10.11896/jsjkx.241100190
• Computer Graphics & Multimedia • Previous Articles Next Articles
LIU Yufei, XIAO Yanhui, TIAN Huawei
CLC Number:
[1]GAO C F,XIAO Y H,TIAN H W.Image camera fingerprint extraction algorithm based on MPRNet[J].Netinfo Security,2022,22(10):15-23. [2]MANI R G,PARTHASARATHY R,ESWARAN S,et al.Asurvey on digital image forensics:Metadata and image forgeries[C]//Workshop on Applied Computing.2022:22-55. [3]LUKAS J,FRIDRICH J,GOLJAN M.Digital camera identification from sensor pattern noise[J].IEEE Transactions on Information Forensics and Security,2006,1(2):205-214. [4]JIANG X,WEI S K,ZHAO R Z,et al.Survey of imaging device source identification[J].Journal of Beijing Jiaotong University,2019,43(2):48-57. [5]VALSESIA D,COLUCCIA G,BIANCHI T,et al.User Authentication via PRNU-Based Physical Unclonable Functions[J].IEEE Transactions on Information Forensics and Security,2017,12(8):1941-1956. [6]BA Z,PIAO S,FU X,et al.ABC:Enabling Smartphone Authentication with Built-in Camera[C]//Proceedings of the Network and Distributed System Security Symposium.2018. [7]MOHANTY M,ZHANG M,ASGHAR M R,et al.e-PRNU:Encrypted Domain PRNU-Based Camera Attribution for Preserving Privacy[J].IEEE Transactions on Dependable and Secure Computing,2021,18(1):426-437. [8]KORUS P,MEMON N.Computational Sensor Fingerprints[J].IEEE Transactions on Information Forensics and Security,2022,17:2508-2523. [9]LIU L,FU X,CHEN X,et al.FITS:Matching camera fingerprints subject to software noise pollution[C]//Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security.New York:ACM,2023:1660-1674. [10]MONTIBELLER A,PÉREZ-GONZÁLEZ F.An adaptive methodfor camera attribution under complex radial distortion corrections[J].IEEE Transactions on Information Forensics and Security,2023,19:385-400. [11]GUPTA B,TIWARI M.Improving performance of source-ca-mera identification by suppressing peaks and eliminating low-frequency defects of reference SPN[J].IEEE Signal Processing Letters,2018,25(9):1340-1343. [12]CHEN M,FRIDRICH J,GOLJAN M,et al.Determining image origin and integrity using sensor noise[J].IEEE Transactions on Information Forensics and Security,2008,3(1):74-90. [13]LIN X,LI C T.Preprocessing reference sensor pattern noise via spectrum equalization[J].IEEE Transactions on Information Forensics and Security,2015,11(1):126-140. [14]RAO Q,WANG J.Suppressing random artifacts in referencesensor pattern noise via decorrelation[J].IEEE Signal Proces-sing Letters,2017,24(6):809-813. [15]ALBISANI C,IULIANI M,PIVA A.Checking PRNU Usability on modern devices[C]//ICASSP 2021-2021 IEEE International Conference on Acoustics,Speech and Signal Processing.IEEE,2021:2535-2539 [16]BHAT N N,BIANCHI T.Investigating inconsistencies in prnu-based camera identification[C]//Proceedings of 2022 IEEE International Conference on Image Processing.IEEE,2022:851-855. [17]GOLJAN M.Digital camera identification from images-estimating false acceptance probability[C]//International workshop on digital watermarking.Berlin:Springer,2008:454-468. [18]KANG X,LI Y,QU Z,et al.Enhancing source camera identification performance with a camera reference phase sensor pattern noise[J].IEEE Transactions on Information Forensics and Security,2011,7(2):393-402. [19]LE-KHAC P H,HEALY G,SMEATON A F.Contrastive representation learning:A framework and review[J].IEEE Access,2020,8:193907-193934. [20]HE K,FAN H,WU Y,et al.Momentum contrast for unsupervised visual representation learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.IEEE,2020:9726-9735. [21]GAO T,YAO X,CHEN D.Simcse:Simple contrastive learning of sentence embeddings[J].arXiv:2104.08821,2021. [22]SHEN D,ZHAO Y,QUAN C.Identity-Referenced DeepfakeDetection with Contrastive Learning[C]//Proceedings of the 2022 ACM Workshop on Information Hiding and Multimedia Security.New York:ACM,2022:27-32. [23]ZHENG J,ZHOU Y,HU X,et al.Deepfake Detection withCombined Unsupervised-Supervised Contrastive Learning[C]//2024 IEEE International Conference on Image Processing.IEEE,2024:787-793. [24]QIAO T,XIE S,CHEN Y,et al.Fully Unsupervised Deepfake Video Detection Via Enhanced Contrastive Learning[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2024,46(7):4654-4668. [25]LIU X,YU Y,LI X,et al.MCL:Multimodal Contrastive Learning for Deepfake Detection[J].IEEE Transactions on Circuits and Systems for Video Technology,2024,34(4):2803-2813. [26]ZHU Y,ZHANG C,GAO J,et al.High-compressed deepfake video detection with contrastive spatiotemporal distillation[J].Neurocomputing,2024,565:126872. [27]COZZOLINO D,VERDOLIVA L.Noiseprint:A CNN-BasedCamera Model Fingerprint[J].IEEE Transactions on Information Forensics and Security,2020,15:144-159. [28]KALANTIDIS Y,SARIYILDIZ M B,PION N,et al.Hard negative mixing for contrastive learning[J].Advances in Neural Information Processing Systems,2020,33:21798-21809. [29]TIAN Y,KRISHNAN D,ISOLA P.Contrastive multiview co-ding[C]//European Conference on Computer Vision.Cham:Springer,2020:776-794. [30]CHEN X,FAN H,GIRSHICK R,et al.Improved baselines with momentum contrastive learning[J].arXiv:200304297,2020. [31]GIDARIS S,BURSUC A,PUY G,et al.Obow:Online bag-of-visual-words generation for self-supervised learning[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition.IEEE,2021:6826-6836. [32]LIN X,LI C T.On constructing A better correlation predictor for PRNU-based image forgery localization[C]//Proceedings of 2021 IEEE International Conference on Multimedia and Expo.IEEE,2021:1-6. [33]FERNÁNDEZ-MENDUIÑA S,PÉREZ-GONZÁLEZ F.On the information leakage quantification of camera fingerprint estimates[J].EURASIP Journal on Information Security,2021(1). [34]PÉREZ-GONZÁLEZ F,FERNÁNDEZ-MENDUIÑA S.PRNU- leaks:Facts and remedies[C]//Proceedings of 2020 28th European Signal Processing Conference.2021:720-724. [35]TIAN H,XIAO Y,CAO G,et al.Daxing smartphone identification dataset[J].IEEE Access,2019,7:101046-101053. [36]AKBARI Y,ALMAADEED N,AL-MAADEED S,et al.PRNU-Net:A deep learning approach for source camera model identification based on videos taken with smartphone[C]//Proceedings of 2022 26th International Conference on Pattern Recognition.2022:599-605. [37]ULYANOV D,VEDALDI A,LEMPITSKY V.Deep image prior[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.IEEE,2018:9446-9454. [38]CHEN M,FRIDRICH J,GOLJAN M,et al.Source digital camcorder identification using sensor photo response non-uniformity[C]//Security,Steganography,and Watermarking of Multimedia Contents IX.2007:517-528. [39]GLOE T,BÖHME R.The Dresden Image Database for benchmarking digital image forensics[C]//Proceedings of the 2010 ACM symposium on applied computing.New York:ACM,2010:1584-1590. [40]XIAO Y,TIAN H,CAO G,et al.Effective PRNU extraction via densely connected hierarchical network[J].Multimedia Tools and Applications,2022,81(15):20443-20463. [41]BERTINI F,SHARMA R,MONTESI D.Are social networks watermarking us or are we(unawarely) watermarking ourself?[J].Journal of Imaging,2022,8(5):132. |
[1] | YE Jiale, PU Yuanyuan, ZHAO Zhengpeng, FENG Jue, ZHOU Lianmin, GU Jinjing. Multi-view CLIP and Hybrid Contrastive Learning for Multimodal Image-Text Sentiment Analysis [J]. Computer Science, 2025, 52(6A): 240700060-7. |
[2] | FU Shufan, WANG Zhongqing, JIANG Xiaotong. Zero-shot Stance Detection in Chinese by Fusion of Emotion Lexicon and Graph ContrastiveLearning [J]. Computer Science, 2025, 52(6A): 240500051-7. |
[3] | LI Jianghui, DING Haiyan, LI Weihua. Prediction of Influenza A Antigenicity Based on Few-shot Contrastive Learning [J]. Computer Science, 2025, 52(6A): 240800053-6. |
[4] | CHEN Yadang, GAO Yuxuan, LU Chuhan, CHE Xun. Saliency Mask Mixup for Few-shot Image Classification [J]. Computer Science, 2025, 52(6): 256-263. |
[5] | WU Pengyuan, FANG Wei. Study on Graph Collaborative Filtering Model Based on FeatureNet Contrastive Learning [J]. Computer Science, 2025, 52(5): 139-148. |
[6] | MIAO Zhuang, CUI Haoran, ZHANG Qiyang, WANG Jiabao, LI Yang. Restoration of Atmospheric Turbulence-degraded Images Based on Contrastive Learning [J]. Computer Science, 2025, 52(5): 171-178. |
[7] | TIAN Qing, KANG Lulu, ZHOU Liangyu. Class-incremental Source-free Domain Adaptation Based on Multi-prototype Replay andAlignment [J]. Computer Science, 2025, 52(3): 206-213. |
[8] | YUAN Ye, CHEN Ming, WU Anbiao, WANG Yishu. Graph Anomaly Detection Model Based on Personalized PageRank and Contrastive Learning [J]. Computer Science, 2025, 52(2): 80-90. |
[9] | LIU Yanlun, XIAO Zheng, NIE Zhenyu, LE Yuquan, LI Kenli. Case Element Association with Evidence Extraction for Adjudication Assistance [J]. Computer Science, 2025, 52(2): 222-230. |
[10] | YE Lishuo, HE Zhixue. Multi-granularity Time Series Contrastive Learning Method Incorporating Time-Frequency Features [J]. Computer Science, 2025, 52(1): 170-182. |
[11] | TIAN Sicheng, HUANG Shaobin, WANG Rui, LI Rongsheng, DU Zhijuan. Contrastive Learning-based Prompt Generation Method for Large-scale Language Model ReverseDictionary Task [J]. Computer Science, 2024, 51(8): 256-262. |
[12] | HU Haibo, YANG Dan, NIE Tiezheng, KOU Yue. Graph Contrastive Learning Incorporating Multi-influence and Preference for Social Recommendation [J]. Computer Science, 2024, 51(7): 146-155. |
[13] | TIAN Qing, LU Zhanghu, YANG Hong. Unsupervised Domain Adaptation Based on Entropy Filtering and Class Centroid Optimization [J]. Computer Science, 2024, 51(7): 345-353. |
[14] | YU Bihui, TAN Shuyue, WEI Jingxuan, SUN Linzhuang, BU Liping, ZHAO Yiman. Vision-enhanced Multimodal Named Entity Recognition Based on Contrastive Learning [J]. Computer Science, 2024, 51(6): 198-205. |
[15] | LI Yilin, SUN Chengsheng, LUO Lin, JU Shenggen. Aspect-based Sentiment Classification for Word Information Enhancement Based on Sentence Information [J]. Computer Science, 2024, 51(6): 299-308. |
|