Computer Science ›› 2025, Vol. 52 ›› Issue (6A): 240900060-8.doi: 10.11896/jsjkx.240900060
• Big Data & Data Science • Previous Articles Next Articles
TENG Minjun1, SUN Tengzhong1, LI Yanchen1, CHEN Yuan2, SONG Mofei3
CLC Number:
[1]EKE C I,NORMAN A A,SHUIBL,et al.A survey of user profiling:State-of-the-art,challenges,and solutions[J].IEEE Access,2019,7:144907-144924. [2]PURIFICATO E,BORATTO L,DE LUCA E W.User Mode-ling and User Profiling:A Comprehensive Survey[J].arXiv:2402.09660,2024. [3]D′OCA S,HONG T.A data-mining approach to discover patterns of window opening and closing behavior in offices[J].Building and Environment,2014,82:726-739. [4]VAN DAM J W,VAN DE VELDEN M.Online profiling andclustering of Facebook users[J].Decision Support Systems,2015,70:60-72. [5]YAN S,ZHAO T,DENG J.Interaction-aware Hypergraph Neural Networks for User Profiling[C]//2022 IEEE 9th International Conference on Data Science and Advanced Analytics.IEEE,2022:1-10. [6]LI M,HAN X,SHENG H,et al.A Novel RNN Model with Enhanced Behavior Semantic for Network User Profile[C]//2022 Tenth International Conference on Advanced Cloud and Big Data.IEEE,2022:190-193. [7]XUAN H,LIU Y,LI B,et al.Knowledge enhancement for con-trastive multi-behavior recommendation[C]//Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining.2023:195-203. [8]RAO D,YAROWSKY D,SHREEVATSA,et al.Classifying latent user attributes in twitter[C]//Proceedings of the 2nd International Workshop on Search and Mining User-generated Contents.2010:37-44. [9]FERNANDEZ-LANVIN D,DE ANDRES-SUAREZ J,GONZA-LEZ-RODRIGUEZ M,et al.The dimension of age and gender as user model demographic factors for automatic personalization in e-commerce sites[J].Computer Standards & Interfaces,2018,59:1-9. [10]CURA A,KÜÇÜK H,ERGEN E,et al.Driver profiling using long short-term memory(LSTM) and convolutional neural network(CNN) methods[J].IEEE Transactions on Intelligent Transportation Systems,2020,22(10):6572-6582. [11]MEKRUKSAVANICH S,JITPATTANAKUL A.Convolutio-nal neural network and data augmentation for behavioral-based biometric user identification[C]//ICT Systems and Sustainability(CT4SD 2020).Springer Singapore,2021:753-761. [12]YU Z,LIAN J,MAHMOODY A,et al.Adaptive User Modeling with Long and Short-Term Preferences for Personalized Recommendation[C]//IJCAI.2019:4213-4219. [13]FAZIL M,SAH A K,ABULAISH M.Deepsbd:a deep neural network model with attention mechanism for socialbot detection[J].IEEE Transactions on Information Forensics and Security,2021,16:4211-4223. [14]WANG X,SUN G,FANG X,et al.Modeling Spatio-temporal Neighbourhood for Personalized Point-of-interest Recommendation[C]//IJCAI.2022:3530-3536. [15]ZHAO H,XIE J,WANG H.Co-learning Graph ConvolutionNetwork for Mobile User Profiling[J].Neural Processing Letters,2022,54(6):5299-5316. [16]CHEN W,GU Y,REN Z,et al.Semi-supervised User Profiling with Heterogeneous Graph Attention Networks[C]//IJCAI.2019:2116-212. [17]RAHIMI A,COHN T,BALDWIN T.Semi-supervised User Geolocation via Graph Convolutional Networks[C]//Proceedings of the 56th Annual Meeting of the Association for ComputationalLinguistics(Volume 1:Long Papers).2018:2009-2019. [18]YAN Q,ZHANG Y,LIU Q,et al.Relation-aware heteroge-neous graph for user profiling[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management.2021:3573-3577. [19]QI Y,HU K,ZHANG B,et al.Trilateral spatiotemporal attention network for user behavior modeling in location-based search[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management.2021:3373-3377. [20]YUAN F,ZHANG G,KARATZOGLOU A,et al.One person,one model,one world:Learning continual user representation without forgetting[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval.2021:696-705. [21]QI T,WU F,WU C,et al.News recommendation with candidate-aware user modeling[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval.2022:1917-1921. [22]CHU Y W,HOSSEINALIPOUR S,TENORIO E,et al.Mitigating biases in student performance prediction via attention-based personalized federated learning[C]//Proceedings of the 31st ACM International Conference on Information & Knowledge Management.2022:3033-3042. [23]LI M,HAN X,SHENG H,et al.A Novel RNN Model with Enhanced Behavior Semantic for Network User Profile[C]//2022 Tenth International Conference on Advanced Cloud and Big Data(CBD).IEEE,2022:190-193. [24]AGARWAL P,SRIVASTAVA M,SINGHV,et al.Modelinguser behavior with interaction networks for spam detection[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval.2022:2437-2442. [25]HAN J,LI W,CAI Z,et al.Multi-aggregator time-warping heterogeneous graph neural network for personalized micro-video recommendation[C]//Proceedings of the 31st ACM International Conference on Information & Knowledge Management.2022:676-685. [26]YAN S,ZHAO T,DENG J.Interaction-aware Hypergraph Neural Networks for User Profiling[C]//2022 IEEE 9th International Conference on Data Science and Advanced Analytics.IEEE,2022:1-10. [27]CHENG Z,HAN S,LIU F,et al.Multi-behavior recommendation with cascading graph convolution networks[C]//Procee-dings of the ACM Web Conference 2023.2023:1181-1189. [28]ZHANG S,TONG H,XU J,et al.Graph convolutional net-works:a comprehensive review[J].Computational Social Networks,2019,6(1):1-23. [29]KIPF T N,WELLING M.Semi-Supervised Classification withGraph Convolutional Networks[C]//International Conference on Learning Representations.2016. [30]VELIČKOVIĆ P,CUCURULL G,CASANOVA A,et al.Graph Attention Networks[C]//International Conference on Learning Representations.2018. [31]SCHLICHTKRULL M,KIPF T N,BLOEMP,et al.Modelingrelational data with graph convolutional networks[C]//The semantic web:15th international conference(ESWC 2018).Heraklion,Crete,Greece:Springer International Publishing,2018:593-607. [32]HONG H,GUO H,LIN Y,et al.An attention-based graph neural network for heterogeneous structural learning[C]//Procee-dings of the AAAI Conference on Artificial Intelligence.2020:4132-4139. [33]GU A,GOEL K,RÉ C.Efficiently modeling long sequences with structured state spaces[J].arXiv:2111.00396,2021. [34]MEHTA H,GUPTA A,CUTKOSKY A,et al.Long range language modeling via gated state spaces[J].arXiv:2206.13947,2022. [35]GU A,DAO T.Mamba:Linear-time sequence modeling with selective state spaces[J].arXiv:2312.00752,2023. [36]LI K,LI X,WANG Y,et al.Videomamba:State space model for efficient video understanding[J].arXiv:2403.06977,2024. [37]MA J,LI F,WANG B.U-mamba:Enhancing long-range de-pendency for biomedical image segmentation[J].arXiv:2401.04722,2024. [38]LIU J,YU R,WANG Y,et al.Point mamba:A novel pointcloud backbone based on state space model with octree-based ordering strategy[J].arXiv:2403.06467,2024. [39]XU K,HU W,LESKOVEC J,et al.How Powerful are Graph Neural Networks?[C]//International Conference on Learning Representations.2018. [40]HU Z,DONG Y,WANG K,et al.Heterogeneous graph trans-former[C]//Proceedings of the Web Conference 2020.2020:2704-2710. [41]WANG C,TSEPA O,MA J,et al.Graph-mamba:Towards long-range graph sequence modeling with selective state spaces[J].arXiv:2402.00789,2024. [42]ABDELRAZEK M,PURIFICATO E,BORATTO L,et al.Fairup:A framework for fairness analysis of graph neural network-based user profiling models[C]//Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval.2023:3165-3169. [43]PURIFICATO E,BORATTO L,DE LUCA E W.Toward a Re-sponsible Fairness Analysis:From Binary to Multiclass and Multigroup Assessment in Graph Neural Network-Based User Modeling Tasks[J].Minds and Machines,2024,34(3):33. [44]JOULIN A,GRAVE E,BOJANOWSKI P,et al.Bag of tricks for efficient text classification[J].arXiv:1607.01759,2016. |
[1] | GUAN Xin, YANG Xueyong, YANG Xiaolin, MENG Xiangfu. Tumor Mutation Prediction Model of Lung Adenocarcinoma Based on Pathological [J]. Computer Science, 2025, 52(6A): 240700010-8. |
[2] | TAN Jiahui, WEN Chenyan, HUANG Wei, HU Kai. CT Image Segmentation of Intracranial Hemorrhage Based on ESC-TransUNet Network [J]. Computer Science, 2025, 52(6A): 240700030-9. |
[3] | CHEN Xianglong, LI Haijun. LST-ARBunet:An Improved Deep Learning Algorithm for Nodule Segmentation in Lung CT Images [J]. Computer Science, 2025, 52(6A): 240600020-10. |
[4] | LI Daicheng, LI Han, LIU Zheyu, GONG Shiheng. MacBERT Based Chinese Named Entity Recognition Fusion with Dependent Syntactic Information and Multi-view Lexical Information [J]. Computer Science, 2025, 52(6A): 240600121-8. |
[5] | HUANG Bocheng, WANG Xiaolong, AN Guocheng, ZHANG Tao. Transmission Line Fault Identification Method Based on Transfer Learning and Improved YOLOv8s [J]. Computer Science, 2025, 52(6A): 240800044-8. |
[6] | WU Zhihua, CHENG Jianghua, LIU Tong, CAI Yahui, CHENG Bang, PAN Lehao. Human Target Detection Algorithm for Low-quality Laser Through-window Imaging [J]. Computer Science, 2025, 52(6A): 240600069-6. |
[7] | ZENG Fanyun, LIAN Hechun, FENG Shanshan, WANG Qingmei. Material SEM Image Retrieval Method Based on Multi-scale Features and Enhanced HybridAttention Mechanism [J]. Computer Science, 2025, 52(6A): 240800014-7. |
[8] | HOU Zhexiao, LI Bicheng, CAI Bingyan, XU Yifei. High Quality Image Generation Method Based on Improved Diffusion Model [J]. Computer Science, 2025, 52(6A): 240500094-9. |
[9] | DING Xuxing, ZHOU Xueding, QIAN Qiang, REN Yueyue, FENG Youhong. High-precision and Real-time Detection Algorithm for Photovoltaic Glass Edge Defects Based onFeature Reuse and Cheap Operation [J]. Computer Science, 2025, 52(6A): 240400146-10. |
[10] | WANG Rong , ZOU Shuping, HAO Pengfei, GUO Jiawei, SHU Peng. Sand Dust Image Enhancement Method Based on Multi-cascaded Attention Interaction [J]. Computer Science, 2025, 52(6A): 240800048-7. |
[11] | WANG Baohui, GAO Zhan, XU Lin, TAN Yingjie. Research and Implementation of Mine Gas Concentration Prediction Algorithm Based on Deep Learning [J]. Computer Science, 2025, 52(6A): 240400188-7. |
[12] | ZHENG Chuangrui, DENG Xiuqin, CHEN Lei. Traffic Prediction Model Based on Decoupled Adaptive Dynamic Graph Convolution [J]. Computer Science, 2025, 52(6A): 240400149-8. |
[13] | HONG Yi, SHEN Shikai, SHE Yumei, YANG Bin, DAI Fei, WANG Jianxiao, ZHANG Liyi. Multivariate Time Series Prediction Based on Dynamic Graph Learning and Attention Mechanism [J]. Computer Science, 2025, 52(6A): 240700047-8. |
[14] | ZHAO Chanchan, YANG Xingchen, SHI Bao, LYU Fei, LIU Libin. Optimization Strategy of Task Offloading Based on Meta Reinforcement Learning [J]. Computer Science, 2025, 52(6A): 240800050-8. |
[15] | SHI Enyi, CHANG Shuyu, CHEN Kejia, ZHANG Yang, HUANG Haiping. BiGCN-TL:Bipartite Graph Convolutional Neural Network Transformer Localization Model for Software Bug Partial Localization Scenarios [J]. Computer Science, 2025, 52(6A): 250200086-11. |
|