Computer Science ›› 2025, Vol. 52 ›› Issue (9): 313-319.doi: 10.11896/jsjkx.240700161
• Artificial Intelligence • Previous Articles Next Articles
GAO Long1, LI Yang2, WANG Suge1,3
CLC Number:
[1]HAZARIKA D,ZIMMERMANN,PORIA S,et al.Misa:Modality-invariant and specific representations for multimodal sentiment analysis[C]//Proceedings of the 28th ACM InternationalConference on Multimedia.2020:1122-1131. [2]NAGRANI A,YANG S,ARNAB A,et al.Attention bottle-necks for multimodal fusion[C]//Proceedings of the 35th International Conference on Neural Information Processing Systems.Red Hook,NY:Curran Associates Inc.,2021:14200-14213. [3]WU S X,DAI D M,QIN Z W,et al.Denoising bottleneck with mutual information maximization for video multimodal fusion[C]//Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing.2023:756-767. [4]ZHANG H Y,W Y,YIN G H,et al.Learning language-guided adaptive hyper-modality representation for multimodal sentiment analysis[C]//Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics.2023:2231-2243. [5]YU T S,GAO H Y,YANG M,et al.Speech-text dialog pre-training for spoken dialog understanding with explicit cross-modal alignment[C]//Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics.ACL,2023:7900-7913. [6]YANG H,LIN J Y,YANG A,et al.Prompt tuning for unified multimodal pretrained models[C]//Findings of the Association for Computational Linguistics.2023:402-416. [7]TSAI Y H,LIANG P P,ZADEH A,et al.Learning factorized multimodal representations[C]//International Conference on Representation Learning.2018:53-69. [8]HAN W,CHEN H,PORIA S,et al.Improving multimodal fu-sion with hierarchical mutual information maximization for multimodal sentiment analysis[C]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing.2021:9180-9192 [9]GUO J W,TANG J J,DAI W C,et al.Dynamically adjust wordrepresentations using unaligned multimodal information[C]//Proceedings of the 30th ACM International Conference on Multimedia.2022:3394-3402. [10]SUN Y,MAI S J,HU H F,et al.Learning to learn better unimodal representations via adaptive multimodal meta-learning[J].IEEE Transactions on Affective Computing,2023,14(3):2209-2223. [11]SUN L C,ZHENG L,LIU B,et al.Efficient multimodal trans-former with dual-level feature restoration for robust multimodal sentiment analysis[J].IEEE Transactions on Affective Computing,2024,15(1):309-325. [12]ZADEH A,CHEN M H,PORIA S,et al.Tensor fusion network for multimodal sentiment analysis[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Proces-sing.2017:1103-1114. [13]HUANG J H,LIU B,NIU M Y.Multimodal transformer fusion for continuous emotion recognition[C]//Proceedings of the IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP).2020:3507-3511. [14]RAHMAN W,HASAN M K,LEE S,et al.Integrating multi-modal information in large pretrained transformers[C]//Proceedings of the Conference Association for Computational Linguistics.2020:2359-2373. [15]LIANG T,LIN G S,FENG L,et al.Attention Is not enough:mitigating the distribution discrepancy in asynchronous multimodal sequence fusion[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:8148-8156. [16]LUO H S,JI L,HUANG Y Y,et al.Scalevlad:Improving multimodal sentiment analysis via multiscale fusion of locally descriptors[J].arXiv:2112.01368,2021. [17]SUN J,HAN S K,RUAN Y P,et al.Layer-wise fusion with modality independence modeling for multi-modal emotion recognition[C]//Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics.2023:658-670. [18]SHI T,HUANG S L.MultiEMO:An attention-based correlation-aware multimodal fusion framework for emotion recognition in conversations[C]//Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics.2023:658-670. [19]GILLES D,KANE J,DRUGMAN T,et al.COVAREP:A collaborative voice analysis repository for speech technologies[C]//Proceedings of the IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP).2014:978-986. [20]AMOS L,LUDWICZUK B,SATYANARAYANAN M.OpenFace:A general-purpose face recognition library with mobile applications[J/OL].https://elijah.cs.cmu.edu/DOCS/CMU-CS-16-118.pdf. [21]ZADEH A,ZELLERS R,PINCU S,et al.Multimodal sentimentintensity analysis in videos:Facial gestures and verbal messages[J].IEEE Intelligent Systems,2016,31(6):82-88. [22]ZADEH A,LIANG P P,PORIA S,et al.Multimodal language analysis in the wild:CMU-MOSEI dataset and interpretable dynamic fusion graph[C]//Proceedings of the Annual Meeting of the Association for Computational Linguistics.2018:2236-2246. [23]LIU Z,SHEN Y,LIANG P P,et al.Efficient low-rank multimodal fusion with modality-specific factors[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics.2018:2247-2256. [24]TSAI Y H,BAI S,LIANG P P,et al.Multimodal transformer for unaligned multimodal language sequences[C]//Proceedings of the Conference Association for Computational Linguistics Meeting.2019:6558-6571. [25]LYU F M,CHEN X,HUANG Y Y,et al.Progressive modality reinforcement for human multimodal emotion recognition from unaligned multimodal sequences[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).2021:2554-2562. [26]YU W M,XU H,YUAN Z Q,et al.Learning modality-specific representations withself supervised multi-task learning for multimodal sentiment analysis[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2021:10790-10797. [27]HU G M,LIN T E,ZHAO Y,et al.UniMSE:Towards unifiedmultimodal sentiment analysis and emotion recognition[C]//Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing.2022:7837-7851. [28]GUO R R,GAO J L,XU R J.Aspect-based Sentiment Analysis by Fusing Multi-feature Graph Convolutional Network[J].Journal of Chinese Computer Systems,2024,45(5):1039-1045. |
[1] | LIU Wei, XU Yong, FANG Juan, LI Cheng, ZHU Yujun, FANG Qun, HE Xin. Multimodal Air-writing Gesture Recognition Based on Radar-Vision Fusion [J]. Computer Science, 2025, 52(9): 259-268. |
[2] | PENG Jiao, HE Yue, SHANG Xiaoran, HU Saier, ZHANG Bo, CHANG Yongjuan, OU Zhonghong, LU Yanyan, JIANG dan, LIU Yaduo. Text-Dynamic Image Cross-modal Retrieval Algorithm Based on Progressive Prototype Matching [J]. Computer Science, 2025, 52(9): 276-281. |
[3] | ZHONG Boyang, RUAN Tong, ZHANG Weiyan, LIU Jingping. Collaboration of Large and Small Language Models with Iterative Reflection Framework for Clinical Note Summarization [J]. Computer Science, 2025, 52(9): 294-302. |
[4] | ZHOU Tao, DU Yongping, XIE Runfeng, HAN Honggui. Vulnerability Detection Method Based on Deep Fusion of Multi-dimensional Features from Heterogeneous Contract Graphs [J]. Computer Science, 2025, 52(9): 368-375. |
[5] | LIU Jian, YAO Renyuan, GAO Nan, LIANG Ronghua, CHEN Peng. VSRI:Visual Semantic Relational Interactor for Image Caption [J]. Computer Science, 2025, 52(8): 222-231. |
[6] | LIU Chengzhuang, ZHAI Sulan, LIU Haiqing, WANG Kunpeng. Weakly-aligned RGBT Salient Object Detection Based on Multi-modal Feature Alignment [J]. Computer Science, 2025, 52(7): 142-150. |
[7] | ZHUANG Jianjun, WAN Li. SCF U2-Net:Lightweight U2-Net Improved Method for Breast Ultrasound Lesion SegmentationCombined with Fuzzy Logic [J]. Computer Science, 2025, 52(7): 161-169. |
[8] | JIANG Kun, ZHAO Zhengpeng, PU Yuanyuan, HUANG Jian, GU Jinjing, XU Dan. Cross-modal Hypergraph Optimisation Learning for Multimodal Sentiment Analysis [J]. Computer Science, 2025, 52(7): 210-217. |
[9] | ZHENG Cheng, YANG Nan. Aspect-based Sentiment Analysis Based on Syntax,Semantics and Affective Knowledge [J]. Computer Science, 2025, 52(7): 218-225. |
[10] | WANG Youkang, CHENG Chunling. Multimodal Sentiment Analysis Model Based on Cross-modal Unidirectional Weighting [J]. Computer Science, 2025, 52(7): 226-232. |
[11] | KONG Yinling, WANG Zhongqing, WANG Hongling. Study on Opinion Summarization Incorporating Evaluation Object Information [J]. Computer Science, 2025, 52(7): 233-240. |
[12] | LIU Yajun, JI Qingge. Pedestrian Trajectory Prediction Based on Motion Patterns and Time-Frequency Domain Fusion [J]. Computer Science, 2025, 52(7): 92-102. |
[13] | GUAN Xin, YANG Xueyong, YANG Xiaolin, MENG Xiangfu. Tumor Mutation Prediction Model of Lung Adenocarcinoma Based on Pathological [J]. Computer Science, 2025, 52(6A): 240700010-8. |
[14] | TAN Jiahui, WEN Chenyan, HUANG Wei, HU Kai. CT Image Segmentation of Intracranial Hemorrhage Based on ESC-TransUNet Network [J]. Computer Science, 2025, 52(6A): 240700030-9. |
[15] | CHEN Xianglong, LI Haijun. LST-ARBunet:An Improved Deep Learning Algorithm for Nodule Segmentation in Lung CT Images [J]. Computer Science, 2025, 52(6A): 240600020-10. |
|