计算机科学 ›› 2019, Vol. 46 ›› Issue (11A): 255-259.
罗欢
LUO Huan
摘要: 文中利用运动中共线点的几何特性来获得多摄像机的内外参数。首先,由空间中共线点与图像点之间的对应矩阵来得到对内参数的线性约束,获得了多个摄像机的内参数;然后,根据共线点在摄像机组中各个摄像机下运动前后的坐标,获得摄像机相对于基准摄像机的旋转矩阵和平移向量,以求出摄像机的外参数;最后,进行模拟数据实验和真实图像实验,结果表明了该方法的可行性和有效性。
中图分类号:
[1]贾云得.机器视觉[M].北京:科学出版社,2000. [2]SONKA M,HLAVAC V,BOYLE R.图像处理,分析与机器视觉(第二版)[M].艾海舟,等译.北京:人民邮电出版社,2003. [3]SNYDER W E,QI H.机器视觉教程[M].林学訚,等译.北京:机械工业出版社,2005. [4]马颂德.计算机视觉[M].北京:科学出版社,1999. [5]吴福朝.计算机视觉中的数学方法[M].北京:高等教育出版社,2008. [6]AZIZ Y,KARARA H.Direct Linear Transformation from Comparator Coordinates into Object Space Coordinates [C]∥ASP Symposium on Close-Range Photogrammetric.1971:1-18. [7]FAIG W.Calibration of Close-range Photogrammetric Systems:Mathematical Formulation [J].Photogrammetric Engineering and Remote Sensing,1975,41:1479-1486. [8]ZHANG Z Y.Flexible Camera Calibration by Viewing a Plane from Unknown Orientation [C]∥International Conference on Computer Vision (ICCV).1999:666-673. [9]STURM P,MAYBANK S J.On Plane-Based Camera Calibration:A General Algorithm,Singularities Applications [C]∥International Conference on Computer Vision and Pattern Recognition (CVPR).1999:432-437. [10]ZHANG Z Y.Camera Calibration with One-dimensional Objects [J].IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI),2004,26(7):892-899. [11]WU F C,HU Z Y,ZHU J.Camera Calibration with MovingOne-dimensional Objects [J].Pattern,V12(7):465-484. [12]WANG L,WU F C,HU Z Y.Multi-Camera Calibration with One-dimensional Objects under General Motions [C]∥International Conference on Computer Vision (ICCV).2007:1-7. [13]SUN Q,XU D.Coverage performance analysis of multi-camera networks based on observing reliability model[C]∥Optik.2014:2220-2224. [14]FAUGERAS O D,LUONG Q T,MAYBANK S.Camera Self-Calibration:Theory and Experiments [C]∥European Conference on Computer Vision (ECCV).1992:321-334. [15]MAYBANK S J,FAUGERAS O D.A Theory of Self-Calibration of a Moving Camera [J].International Journal of Computer Vision (IJCV),1992,8(2):123-152. [16]HEYDEN A,ASTROM K.Euclidean Reconstruction from Image Sequences with Varying and Unknown Focal Length and Principal Point [C]∥International Conference on Computer Vision and Pattern Recognition (CVPR).1997:438-443. [17]POLLEYFEYS M,KOCH R,GOOL L V.Self-Calibration and Metric Reconstruction in Spite of Varying and Unknown Internal Camera Parameters [C]∥International Conference on Computer Vision (ICCV).1998:90-95. [18]UESHIBA T,TOMITA F.Plane-Based Calibration Algorithmfor Multi-Camera Systems via Factorization of Homography Matrices [C]∥International Conference on Computer Vision (ICCV).2003:996-973. [19]AGRAWAL M,DAVIS L.Camera Calibration using Spheres:A Semi-definite Programming Approach [C]∥International Conference on Computer Vision (ICCV).2003:782-791. [20]VAISH V,WILBURN B,LEVOY M.Using Plane+Parallaxfor Calibrating Dense Camera Arrays [C]∥International Conference on Computer Vision and Pattern Recognition (CVPR).2004:2-9. [21]SINHA S,POLLEFEYS M,MCMILLAN L.Camera Network Calibration from Dynamic Silhouettes[C]∥International Conference on Computer Vision and Pattern Recognition (CVPR).2004:195-202. [22]WANG B,SUN F M.1-D Camera Calibration Revisited[J].Journal of Computer-Aided Design & Computer Graphics,2014,26(3):452-456. [23]SUN Q,XU D.self-calibration of multi-camera networks without feature correspondence between different cameras[J].Optic,2014,125:3331-3336. [24]LIU Z,LI F,ZHANG G.An external parameter calibrationmethod for multiple cameras based on laser rangefinder[J].Measurement,2014,47:954-962. [25]ZOU J C,TIAN N N.An easy and high-precision camera calibration method based on planar five point[J].Optics and Precision Engineering,2017,25:786-791. |
[1] | 谭建豪, 殷旺, 刘力铭, 王耀南. 采用多相关滤波策略的鲁棒长时自适应目标跟踪[J]. 计算机科学, 2020, 47(12): 169-176. |
[2] | 曹义亲, 谢舒慧. 基于网格搜索的特定类别图像去噪算法[J]. 计算机科学, 2020, 47(11): 168-173. |
[3] | 温静, 李雨萌. 基于多尺度反卷积深度学习的显著性检测[J]. 计算机科学, 2020, 47(11): 179-185. |
[4] | 李宗民, 李思远, 刘玉杰, 李华. 基于注意力模型的手绘图像检索方法[J]. 计算机科学, 2020, 47(11): 199-204. |
[5] | 蓝亦伦, 孟敏, 武继刚. 基于视觉语义联合嵌入和注意力机制的情感预测[J]. 计算机科学, 2020, 47(11): 250-254. |
[6] | 沈琦, 陈逸伦, 刘枢, 刘利刚. 基于两级网络的三维目标检测算法[J]. 计算机科学, 2020, 47(10): 145-150. |
[7] | 李灏, 唐敏, 林建武, 赵云波. 基于改进困难三元组损失的跨模态行人重识别框架[J]. 计算机科学, 2020, 47(10): 180-186. |
[8] | 任雪婷, 赵涓涓, 强彦, Saad Abdul RAUF, 刘继华. 联合成对学习和图像聚类的无监督肺癌亚型识别[J]. 计算机科学, 2020, 47(10): 200-206. |
[9] | 张善彬, 袁金钊, 陈辉, 王玉荣, 王杰, 屠长河. 基于标准路牌的车辆自定位[J]. 计算机科学, 2020, 47(7): 97-102. |
[10] | 王昆仑, 刘文璨, 何小海, 卿粼波, 吴晓红. 一种用于异常行为检测的运动特征描述子[J]. 计算机科学, 2020, 47(4): 119-124. |
[11] | 周子钦, 严华. 基于多任务学习的有限样本多视角三维形状识别算法[J]. 计算机科学, 2020, 47(4): 125-130. |
[12] | 刘砚, 雷印杰, 宁芊. 基于深度神经网络的“弱监督”密集场景人群计数算法[J]. 计算机科学, 2020, 47(4): 184-188. |
[13] | 庞荣来,林静,张磊. 网格驱动的双向图像拼接算法[J]. 计算机科学, 2020, 47(3): 130-136. |
[14] | 刘晓彤,王伟,李泽禹,沈思婉,姜小明. 基于改进BP神经网络的尿液中红白细胞识别算法[J]. 计算机科学, 2020, 47(2): 102-105. |
[15] | 傅雪阳,孙琦,黄悦,丁兴号. 基于深度邻近连接网络的单幅图像去雨方法[J]. 计算机科学, 2020, 47(2): 106-111. |
|