计算机科学 ›› 2019, Vol. 46 ›› Issue (11A): 255-259.

• 模式识别与图像处理 • 上一篇    下一篇

利用共线点求解多摄像机内外参数

罗欢   

  1. (昆明理工大学津桥学院 昆明650000)
  • 出版日期:2019-11-10 发布日期:2019-11-20
  • 通讯作者: 罗欢(1990-),女,硕士生,讲师,主要研究方向为计算机视觉,E-mail:10104508615@qq.com。

Using Collinear Points Solving Intrinsic and External Parameters of Multiple Cameras

LUO Huan   

  1. (Kunming University of Science and Technology Oxbridge College,Kunming 650000,China)
  • Online:2019-11-10 Published:2019-11-20

摘要: 文中利用运动中共线点的几何特性来获得多摄像机的内外参数。首先,由空间中共线点与图像点之间的对应矩阵来得到对内参数的线性约束,获得了多个摄像机的内参数;然后,根据共线点在摄像机组中各个摄像机下运动前后的坐标,获得摄像机相对于基准摄像机的旋转矩阵和平移向量,以求出摄像机的外参数;最后,进行模拟数据实验和真实图像实验,结果表明了该方法的可行性和有效性。

关键词: 多摄像机, 共线点, 单应矩阵

Abstract: The thesis used the geometric characteristics of collinear points to get the intrinsic parameters of the came-ras.Firstly,the homographic matrix between space collinear points and its image points is used to get the linear constraints of the intrinsic parameters and the intrinsic parameters for multiple cameras.Then,according to the coordinates of collinear points before and after movement in each camera,the rotation matrix and translation vector of the camera relative to the reference camera are obtained,and the outside parameters of the cameras are solved.Finally,simulation data and real image experiments show the feasibility and effectiveness of this method.

Key words: Multiple cameras, Collinear points, Homographic matrix

中图分类号: 

  • TP391.41
[1]贾云得.机器视觉[M].北京:科学出版社,2000.
[2]SONKA M,HLAVAC V,BOYLE R.图像处理,分析与机器视觉(第二版)[M].艾海舟,等译.北京:人民邮电出版社,2003.
[3]SNYDER W E,QI H.机器视觉教程[M].林学訚,等译.北京:机械工业出版社,2005.
[4]马颂德.计算机视觉[M].北京:科学出版社,1999.
[5]吴福朝.计算机视觉中的数学方法[M].北京:高等教育出版社,2008.
[6]AZIZ Y,KARARA H.Direct Linear Transformation from Comparator Coordinates into Object Space Coordinates [C]∥ASP Symposium on Close-Range Photogrammetric.1971:1-18.
[7]FAIG W.Calibration of Close-range Photogrammetric Systems:Mathematical Formulation [J].Photogrammetric Engineering and Remote Sensing,1975,41:1479-1486.
[8]ZHANG Z Y.Flexible Camera Calibration by Viewing a Plane from Unknown Orientation [C]∥International Conference on Computer Vision (ICCV).1999:666-673.
[9]STURM P,MAYBANK S J.On Plane-Based Camera Calibration:A General Algorithm,Singularities Applications [C]∥International Conference on Computer Vision and Pattern Recognition (CVPR).1999:432-437.
[10]ZHANG Z Y.Camera Calibration with One-dimensional Objects [J].IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI),2004,26(7):892-899.
[11]WU F C,HU Z Y,ZHU J.Camera Calibration with MovingOne-dimensional Objects [J].Pattern,V12(7):465-484.
[12]WANG L,WU F C,HU Z Y.Multi-Camera Calibration with One-dimensional Objects under General Motions [C]∥International Conference on Computer Vision (ICCV).2007:1-7.
[13]SUN Q,XU D.Coverage performance analysis of multi-camera networks based on observing reliability model[C]∥Optik.2014:2220-2224.
[14]FAUGERAS O D,LUONG Q T,MAYBANK S.Camera Self-Calibration:Theory and Experiments [C]∥European Conference on Computer Vision (ECCV).1992:321-334.
[15]MAYBANK S J,FAUGERAS O D.A Theory of Self-Calibration of a Moving Camera [J].International Journal of Computer Vision (IJCV),1992,8(2):123-152.
[16]HEYDEN A,ASTROM K.Euclidean Reconstruction from Image Sequences with Varying and Unknown Focal Length and Principal Point [C]∥International Conference on Computer Vision and Pattern Recognition (CVPR).1997:438-443.
[17]POLLEYFEYS M,KOCH R,GOOL L V.Self-Calibration and Metric Reconstruction in Spite of Varying and Unknown Internal Camera Parameters [C]∥International Conference on Computer Vision (ICCV).1998:90-95.
[18]UESHIBA T,TOMITA F.Plane-Based Calibration Algorithmfor Multi-Camera Systems via Factorization of Homography Matrices [C]∥International Conference on Computer Vision (ICCV).2003:996-973.
[19]AGRAWAL M,DAVIS L.Camera Calibration using Spheres:A Semi-definite Programming Approach [C]∥International Conference on Computer Vision (ICCV).2003:782-791.
[20]VAISH V,WILBURN B,LEVOY M.Using Plane+Parallaxfor Calibrating Dense Camera Arrays [C]∥International Conference on Computer Vision and Pattern Recognition (CVPR).2004:2-9.
[21]SINHA S,POLLEFEYS M,MCMILLAN L.Camera Network Calibration from Dynamic Silhouettes[C]∥International Conference on Computer Vision and Pattern Recognition (CVPR).2004:195-202.
[22]WANG B,SUN F M.1-D Camera Calibration Revisited[J].Journal of Computer-Aided Design & Computer Graphics,2014,26(3):452-456.
[23]SUN Q,XU D.self-calibration of multi-camera networks without feature correspondence between different cameras[J].Optic,2014,125:3331-3336.
[24]LIU Z,LI F,ZHANG G.An external parameter calibrationmethod for multiple cameras based on laser rangefinder[J].Measurement,2014,47:954-962.
[25]ZOU J C,TIAN N N.An easy and high-precision camera calibration method based on planar five point[J].Optics and Precision Engineering,2017,25:786-791.
[1] 谭建豪, 殷旺, 刘力铭, 王耀南. 采用多相关滤波策略的鲁棒长时自适应目标跟踪[J]. 计算机科学, 2020, 47(12): 169-176.
[2] 曹义亲, 谢舒慧. 基于网格搜索的特定类别图像去噪算法[J]. 计算机科学, 2020, 47(11): 168-173.
[3] 温静, 李雨萌. 基于多尺度反卷积深度学习的显著性检测[J]. 计算机科学, 2020, 47(11): 179-185.
[4] 李宗民, 李思远, 刘玉杰, 李华. 基于注意力模型的手绘图像检索方法[J]. 计算机科学, 2020, 47(11): 199-204.
[5] 蓝亦伦, 孟敏, 武继刚. 基于视觉语义联合嵌入和注意力机制的情感预测[J]. 计算机科学, 2020, 47(11): 250-254.
[6] 沈琦, 陈逸伦, 刘枢, 刘利刚. 基于两级网络的三维目标检测算法[J]. 计算机科学, 2020, 47(10): 145-150.
[7] 李灏, 唐敏, 林建武, 赵云波. 基于改进困难三元组损失的跨模态行人重识别框架[J]. 计算机科学, 2020, 47(10): 180-186.
[8] 任雪婷, 赵涓涓, 强彦, Saad Abdul RAUF, 刘继华. 联合成对学习和图像聚类的无监督肺癌亚型识别[J]. 计算机科学, 2020, 47(10): 200-206.
[9] 张善彬, 袁金钊, 陈辉, 王玉荣, 王杰, 屠长河. 基于标准路牌的车辆自定位[J]. 计算机科学, 2020, 47(7): 97-102.
[10] 王昆仑, 刘文璨, 何小海, 卿粼波, 吴晓红. 一种用于异常行为检测的运动特征描述子[J]. 计算机科学, 2020, 47(4): 119-124.
[11] 周子钦, 严华. 基于多任务学习的有限样本多视角三维形状识别算法[J]. 计算机科学, 2020, 47(4): 125-130.
[12] 刘砚, 雷印杰, 宁芊. 基于深度神经网络的“弱监督”密集场景人群计数算法[J]. 计算机科学, 2020, 47(4): 184-188.
[13] 庞荣来,林静,张磊. 网格驱动的双向图像拼接算法[J]. 计算机科学, 2020, 47(3): 130-136.
[14] 刘晓彤,王伟,李泽禹,沈思婉,姜小明. 基于改进BP神经网络的尿液中红白细胞识别算法[J]. 计算机科学, 2020, 47(2): 102-105.
[15] 傅雪阳,孙琦,黄悦,丁兴号. 基于深度邻近连接网络的单幅图像去雨方法[J]. 计算机科学, 2020, 47(2): 106-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 雷丽晖,王静. 可能性测度下的LTL模型检测并行化研究[J]. 计算机科学, 2018, 45(4): 71 -75 .
[2] 孙启,金燕,何琨,徐凌轩. 用于求解混合车辆路径问题的混合进化算法[J]. 计算机科学, 2018, 45(4): 76 -82 .
[3] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[4] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[5] 史雯隽,武继刚,罗裕春. 针对移动云计算任务迁移的快速高效调度算法[J]. 计算机科学, 2018, 45(4): 94 -99 .
[6] 周燕萍,业巧林. 基于L1-范数距离的最小二乘对支持向量机[J]. 计算机科学, 2018, 45(4): 100 -105 .
[7] 刘博艺,唐湘滟,程杰仁. 基于多生长时期模板匹配的玉米螟识别方法[J]. 计算机科学, 2018, 45(4): 106 -111 .
[8] 耿海军,施新刚,王之梁,尹霞,尹少平. 基于有向无环图的互联网域内节能路由算法[J]. 计算机科学, 2018, 45(4): 112 -116 .
[9] 崔琼,李建华,王宏,南明莉. 基于节点修复的网络化指挥信息系统弹性分析模型[J]. 计算机科学, 2018, 45(4): 117 -121 .
[10] 王振朝,侯欢欢,连蕊. 抑制CMT中乱序程度的路径优化方案[J]. 计算机科学, 2018, 45(4): 122 -125 .