计算机科学 ›› 2020, Vol. 47 ›› Issue (7): 231-235.doi: 10.11896/jsjkx.190600085

• 计算机网络 • 上一篇    下一篇

基于融合元路径图卷积的异质网络表示学习

蒋宗礼, 李苗苗, 张津丽   

  1. 北京工业大学信息学部 北京100124
  • 收稿日期:2019-06-17 出版日期:2020-07-15 发布日期:2020-07-16
  • 通讯作者: 李苗苗(867743373@qq.com)
  • 作者简介:jiangzl@bjut.edu.cn

Graph Convolution of Fusion Meta-path Based Heterogeneous Network Representation Learning

JIANG Zong-li, LI Miao-miao, ZHANG Jin-li   

  1. Department of Information Technology,Beijing University of Technology,Beijing 100124,China
  • Received:2019-06-17 Online:2020-07-15 Published:2020-07-16
  • About author:JIANG Zong-li,born in 1956,Ph.D,professor,Ph.D supervisor,is a member of China Computer Federation.His main research interests include network information search and processing.
    LI Miao-miao,born in 1994,postgra-duate.Her main research interests include network representation learning.

摘要: 近年来,网络表示学习(Network Representation Learning,NRL)作为一种在低维空间中表示节点来分析异质信息网络(Heterogeneous Information Networks,HIN)的有效方法受到越来越多的关注。基于随机游走的方法是目前网络表示学习常用的方法,然而这些方法大多基于浅层神经网络,难以捕获异质网络结构信息。图卷积神经网络(Gragh Convolutional Network,GCN)是一种流行的能对图进行深度学习的方法,能够更好地利用网络拓扑结构,但目前的GCN设计针对的是同质信息网络,忽略了网络中丰富的语义信息。为了有效地挖掘异质信息网络中的语义信息和高度非线性的网络结构信息,进而提高网络表示的效果,文中提出了一种基于融合元路径的图卷积异质网络表示学习算法(MG2vec)。该算法首先通过基于元路径的关联度量方法来获取异质信息网络中丰富的语义信息;然后采用图卷积神经网络进行深度学习,捕捉节点和邻居节点的特征,弥补浅层模型捕捉网络结构信息能力不足的缺陷,从而实现将丰富的语义信息和结构信息更好地融入低维的节点表示中。在数据集DBLP和IMDB上分别进行实验,相比DeepWalk,node2vec和Metapath2vec算法,所提MG2vec算法在多标签分类任务上的分类精确率更高且性能更优,精确率和Macro-F1值分别达到了94.49%和94.16%,且与DeepWalk相比分别最高提升了26.05%和28.73%。实验结果证明,MG2vec算法的性能优于经典的网络表示学习算法,具有更好的异质信息网络表示效果。

关键词: 图卷积网络, 网络表示学习, 网络结构信息, 异质信息网络, 语义信息, 元路径

Abstract: In recent years,network representation learning has received more and more attention as an effective method for analyzing heterogeneous information networks by representing nodes in a low-dimensional space.Random walk based methods are currently popular methods to learn network embedding,however,most of these methods are based on shallow neural networks,which make it difficult to capture heterogeneous network structure information.The graph convolutional network (GCN) is a popular method for deep learning of graphs,which is known to be capable of better exploitation of network topology,but current design of GCN is intended for homogenous networks,ignoring the rich semantic information in the network.In order to effectively mine the semantic information and highly nonlinear network structure information in heterogeneous information networks,this paper proposes a heterogeneous network representation learning algorithm based on graph convolution of fusion meta-path(MG2vec)to improve the effect of network representation.Firstly,the algorithm obtains rich semantic information in heterogeneous information networks through relevance measurement based on meta-paths.Then the graph convolution network is used for deep learning to capture the characteristics of nodes and neighbor nodes,to make up for the deficiency of shallow model in capturing the information of the network structure,so as to better integrate rich semantic information and structural information into the low-dimensional node representation.Experiments are carried out on DBLP and IMDB,compared with DeepWalk,node2vec and Metapath2vec classical algorithms,the proposed MG2vec algorithm has higher classification accuracy and better performance in multi-label classification tasks,the precision and Macro-F1 value can be respectively up to 94.49% and 94.16%,and the both of values are up to 26.05% and 28.73% higher respectively than DeepWalk.The experimental results show that the performance of MG2vec algorithm is better than that of classical network representation learning algorithms,and MG2vec has better heterogeneous information network representation effect.

Key words: Graph convolutional networks, Heterogeneous information network, Meta-path, Network representation learning, Network structure information, Semantics information

中图分类号: 

  • TP183
[1]TU C C,YANG C,LIU Z Y,et al.Network representation learning:an overview [J].Scientia Sinica Informations,2017,47(8):980-996.
[2]SHEIKH N,KEFATO Z T,MONTRESOR A.Semi-Supervised Heterogeneous Information Network Embedding for Node Classification using 1D-CNN[C]//2018 Fifth International Confe-rence on Social Networks Analysis,Management and Security (SNAMS).IEEE,2018:177-181.
[3]YIN Y,JI L X,HUANG R Y,et al.Research and development of network representation learning[J].Chinese Journal of Network and Information Security,2019,5(2):77-87.
[4]JIANG Z L,ZHANG J L,DU Y P,et al.Hierarchical construction and node classification of heterogeneous network based on stacked denoising autoencoder[J].Journal of Beijing University of Technology,2018,44(9):1217-1226.
[5]DONG Y,CHAWLA N V,SWAMI A.metapath2vec:Scalable representation learning for heterogeneous networks[C]//Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining.ACM,2017:135-144.
[6]DEFFERRARD M,BRESSON X,VANDERGHEYNST P.Convolutional neural networks on graphs with fast localized spectral filtering[C]//Advances in neural information processing systems.2016:3844-3852.
[7]KIPF T N,WELLING M.Semi-supervised classification withgraph convolutional networks[J].arXiv:1609.02907,2016.
[8]ZHANG D,YIN J,ZHU X,et al.Network representation lear-ning:A survey[J].IEEE transactions on Big Data,2017,PP(99):1-1.
[9]PEROZZI B,AlRFOU R,SKIENA S.Deepwalk:Online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining.ACM,2014:701-710.
[10]MIKOLOV T,SUTSKEVER I,CHEN K,et al.Distributed representations of words and phrases and their compositionality[C]//Advances in neural information processing systems.2013:3111-3119.
[11]MIKOLOV T,CHEN K,CORRADO G,et al.Efficient estimation of word representations in vector space[J].arXiv:1301.3781,2013.
[12]TANG J,QU M,WANG M,et al.Line:Large-scale information network embedding[C]//Proceedings of the 24th international conference on world wide web.International World Wide Web Conferences Steering Committee,2015:1067-1077.
[13]GROVER A,LESKOVEC J.node2vec:Scalable feature learning for networks[C]//Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining.ACM,2016:855-864.
[14]LE C Y,BENGIO Y,HINTON G.Deep learning[J].Nature,2015,521(7553):436-444.
[15]ZHANG J,JIANG Z,LI T.CHIN:Classification with META-PATH in Heterogeneous Information Networks[C]//International Conference on Applied Informatics.Springer,Cham,2018:63-74.
[16]SHI C,LI Y,ZHANG J,et al.A survey of heterogeneous information network analysis[J].IEEE Transactions on Knowledge and Data Engineering,2016,29(1):17-37.
[17]HUANG Z,ZHENG Y,CHENG R,et al.Meta structure:Computing relevance in large heterogeneous information networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.ACM,2016:1595-1604.
[18]GUPTA M,KUMAR P,BHASKER B.A new relevance mea-sure for heterogeneous networks[C]//International Conference on Big Data Analytics and Knowledge Discovery.Cham:Sprin-ger,2015:165-177.
[19]SEBASTIANI F.Machine learning in automated text categorization[J].ACM computing surveys (CSUR),2002,34(1):1-4.
[1] 黄丽, 朱焱, 李春平.
基于异构网络表征学习的作者学术行为预测
Author’s Academic Behavior Prediction Based on Heterogeneous Network Representation Learning
计算机科学, 2022, 49(9): 76-82. https://doi.org/10.11896/jsjkx.210900078
[2] 吕晓锋, 赵书良, 高恒达, 武永亮, 张宝奇.
基于异质信息网的短文本特征扩充方法
Short Texts Feautre Enrichment Method Based on Heterogeneous Information Network
计算机科学, 2022, 49(9): 92-100. https://doi.org/10.11896/jsjkx.210700241
[3] 汪鸣, 彭舰, 黄飞虎.
基于多时间尺度时空图网络的交通流量预测模型
Multi-time Scale Spatial-Temporal Graph Neural Network for Traffic Flow Prediction
计算机科学, 2022, 49(8): 40-48. https://doi.org/10.11896/jsjkx.220100188
[4] 闫佳丹, 贾彩燕.
基于双图神经网络信息融合的文本分类方法
Text Classification Method Based on Information Fusion of Dual-graph Neural Network
计算机科学, 2022, 49(8): 230-236. https://doi.org/10.11896/jsjkx.210600042
[5] 杜航原, 李铎, 王文剑.
一种面向电商网络的异常用户检测方法
Method for Abnormal Users Detection Oriented to E-commerce Network
计算机科学, 2022, 49(7): 170-178. https://doi.org/10.11896/jsjkx.210600092
[6] 李健智, 王红玲, 王中卿.
基于图卷积网络的专利摘要自动生成研究
Automatic Generation of Patent Summarization Based on Graph Convolution Network
计算机科学, 2022, 49(6A): 172-177. https://doi.org/10.11896/jsjkx.210400117
[7] 郭亮, 杨兴耀, 于炯, 韩晨, 黄仲浩.
基于注意力机制和门控网络相结合的混合推荐系统
Hybrid Recommender System Based on Attention Mechanisms and Gating Network
计算机科学, 2022, 49(6): 158-164. https://doi.org/10.11896/jsjkx.210500013
[8] 赵小虎, 叶圣, 李晓.
多算法融合的骨骼重建信息动作分类方法
Multi-algorithm Fusion Behavior Classification Method for Body Bone Information Reconstruction
计算机科学, 2022, 49(6): 269-275. https://doi.org/10.11896/jsjkx.210500070
[9] 周海榆, 张道强.
面向多中心数据的超图卷积神经网络及应用
Multi-site Hyper-graph Convolutional Neural Networks and Application
计算机科学, 2022, 49(3): 129-133. https://doi.org/10.11896/jsjkx.201100152
[10] 潘志豪, 曾碧, 廖文雄, 魏鹏飞, 文松.
基于交互注意力图卷积网络的方面情感分类
Interactive Attention Graph Convolutional Networks for Aspect-based Sentiment Classification
计算机科学, 2022, 49(3): 294-300. https://doi.org/10.11896/jsjkx.210100180
[11] 解宇, 杨瑞玲, 刘公绪, 李德玉, 王文剑.
基于动态拓扑图的人体骨架动作识别算法
Human Skeleton Action Recognition Algorithm Based on Dynamic Topological Graph
计算机科学, 2022, 49(2): 62-68. https://doi.org/10.11896/jsjkx.210900059
[12] 邵海琳, 季怡, 刘纯平, 徐云龙.
基于增强特征金字塔网络的场景文本检测算法
Scene Text Detection Algorithm Based on Enhanced Feature Pyramid Network
计算机科学, 2022, 49(2): 248-255. https://doi.org/10.11896/jsjkx.201100072
[13] 蒋宗礼, 樊珂, 张津丽.
基于生成对抗网络和元路径的异质网络表示学习
Generative Adversarial Network and Meta-path Based Heterogeneous Network Representation Learning
计算机科学, 2022, 49(1): 133-139. https://doi.org/10.11896/jsjkx.201000179
[14] 郑苏苏, 关东海, 袁伟伟.
融合不完整多视图的异质信息网络嵌入方法
Heterogeneous Information Network Embedding with Incomplete Multi-view Fusion
计算机科学, 2021, 48(9): 68-76. https://doi.org/10.11896/jsjkx.210500203
[15] 赵金龙, 赵中英.
基于异质信息网络表示学习与注意力神经网络的推荐算法
Recommendation Algorithm Based on Heterogeneous Information Network Embedding and Attention Neural Network
计算机科学, 2021, 48(8): 72-79. https://doi.org/10.11896/jsjkx.200800226
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!