计算机科学 ›› 2022, Vol. 49 ›› Issue (6A): 172-177.doi: 10.11896/jsjkx.210400117
李健智, 王红玲, 王中卿
LI Jian-zhi, WANG Hong-ling, WANG Zhong-qing
摘要: 专利说明书含有大量有用的信息,但由于篇幅很长,人们很难快速获取其中的有效信息。专利摘要是对一份完整专利说明书的总结与概述,权利要求书作为说明书的一部分,其记载的内容确定了专利申请文件的保护范围,含有专利文献的主要信息。同时经研究发现,专利的权利要求书具有特殊的结构。因此,提出了一种基于图卷积网络的专利摘要自动生成方法,旨在通过专利的权利要求书及其结构信息来生成专利摘要。该方法首先获取权利要求书中的结构信息,在编码阶段引入图卷积神经网络来融合语义信息和结构信息,从而生成高质量的专利摘要。实验结果表明,与目前主流的抽取式摘要方法和传统的编码器-解码器生成方法相比,该方法在ROUGE评价指标上有显著提高。
中图分类号:
[1] ELAMn J L.Finding Structure in Time[J].Cognitive Science,1990,14(2):179-211. [2] KIPF T N,WELLING M.Semi-Supervised Classification withGraph Convolutional Networks[J].arXiv:1609.02907,2016. [3] HOCHREITER S,SCHMIDHUBERJ.Long Short-Term Me-mory[J].Neural Computation,1997,9(8):1735-1780. [4] SHU Y F,WANG Z Q.Research on Chinese Patent Summariza-tion Based on Patented Structure[J].Computer Science,2020,47(S1):45-48. [5] WANGY Z.Research on Abstract Generation Technology Based on Patent Text[D].Harbin:Harbin Institute of Technology,2020. [6] ZHANG E B.Research on Key Technologies of GenerationPatent Claims[D].Harbin:Harbin Institute of Technology,2020. [7] LIU T,WU Y,WANG K Z.Automatic Summarization[J].Information Science,1998(1):63-69. [8] WANG H L,ZHOU G D,ZHU Q M.Chinese Multi-document Summarization Based on Redundancy Control[J].Journal of Chinese Information Processing,2012,26(2):92-96. [9] PAGE L,BRIN S,MOTWANI R,et al.The PageRank CitationRanking:Bringing Order to the Web[C]//Proceedings of Technical Report.Stanford Digital Library Technologies,1998. [10] MIHALCEA R,TARAUP.TextRank:Bringing Order into Texts[C]//Proceedings Conference on Empirical Methods in Natural Language Processing.2004. [11] GÜNES Erkan,RADEV D R.LexPageRank:Prestige in multi-document text summarization[C]//Conference on Empirical Methods in Natural Language Processing.DBLP,2004. [12] LIU F,FLANIGAN J,THOMSON S,et al.Toward Abstractive Summarization Using Semantic Representations[C]//Procee-dings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies,2015:1077-1086. [13] RUSH A M,CHOPRA S,WESTON J.A neural attention model for abstractive sentence summarization[C]//Proceedings of the 2015 Conference Empirical Methods in Natural Language Processing.2015:379-389. [14] CHOPRA S,AULI M,RUSHA M.Abstractive sentence summarization with attentive recurrent neural networks[C]//Proceedings of the 2016 Conference of the North American Chapter of Association for Computational Linguistics:Human Language Technologies.2016:93-98. [15] NALLAPATI R,ZHOU B,DOS SANTOS C,et al.Abstractive text summarization using sequence-to-sequence RNNS and beyond[C]//Proceedings of the 20th SIGNLL Conference on Computational Natural Language Learning.2016:280-290. [16] GU J,LU Z,LI H,et al.Incorporating Copying Mechanism in Sequence-to-Sequence Learning[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics.2016:1631-1640. [17] SEE A,LIU P J,MANNING C D.Get To The Point:Summarization with Pointer-Generator Networks[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics.2017:1073-1083. [18] GULCEHRE C,AHN S,NALLAPATIR,et al.Pointing the un-known words[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics.2016:140-149. [19] ZENG W,LUO W,FIDLER S,et al.Efficient summarizationwith read-again and copy mechanism[J].arXiv:1611.03382,2016. [20] COHAN A,DERNONCOURT F,KIM D S,et al.A Discourse-Aware Attention Model for Abstractive Summarization of Long Documents[C]//Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.2018:615-621. [21] WEI W,WANG H,WANG Z.Abstractive Summarization via Discourse Relation and Graph Convolutional Networks[M]//Natural Language Processing and Chinese Computing,9th CCF International Conference,NLPCC 2020.2020. [22] WU R S,ZHANG Y F,WANG H L,et al.Abstractive Summarization Based on Hierarchical Structure[J]Journal of Chinese Information Processing,2019,33(10):90-98. [23] ZHANG Y,WANG Z Q,WANG H L.Single Document Extractive Summarization with Satellite and Nuclear Relations[J].Journal of Chinese Information Processing,2019,33(10):90-98. [24] VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[J].arXiv:1706.03762,2017. [25] LIN C Y.Automatic evaluation of summaries[C]//Workshop on Text Summarization Branches Out at ACL.US,2010. [26] KINGMA D,BA J.Adam:A Method for Stochastic Optimization[J].arXiv:1412.6980,2014. |
[1] | 汪鸣, 彭舰, 黄飞虎. 基于多时间尺度时空图网络的交通流量预测模型 Multi-time Scale Spatial-Temporal Graph Neural Network for Traffic Flow Prediction 计算机科学, 2022, 49(8): 40-48. https://doi.org/10.11896/jsjkx.220100188 |
[2] | 赵小虎, 叶圣, 李晓. 多算法融合的骨骼重建信息动作分类方法 Multi-algorithm Fusion Behavior Classification Method for Body Bone Information Reconstruction 计算机科学, 2022, 49(6): 269-275. https://doi.org/10.11896/jsjkx.210500070 |
[3] | 周海榆, 张道强. 面向多中心数据的超图卷积神经网络及应用 Multi-site Hyper-graph Convolutional Neural Networks and Application 计算机科学, 2022, 49(3): 129-133. https://doi.org/10.11896/jsjkx.201100152 |
[4] | 潘志豪, 曾碧, 廖文雄, 魏鹏飞, 文松. 基于交互注意力图卷积网络的方面情感分类 Interactive Attention Graph Convolutional Networks for Aspect-based Sentiment Classification 计算机科学, 2022, 49(3): 294-300. https://doi.org/10.11896/jsjkx.210100180 |
[5] | 解宇, 杨瑞玲, 刘公绪, 李德玉, 王文剑. 基于动态拓扑图的人体骨架动作识别算法 Human Skeleton Action Recognition Algorithm Based on Dynamic Topological Graph 计算机科学, 2022, 49(2): 62-68. https://doi.org/10.11896/jsjkx.210900059 |
[6] | 宋龙泽, 万怀宇, 郭晟楠, 林友芳. 面向出租车空载时间预测的多任务时空图卷积网络 Multi-task Spatial-Temporal Graph Convolutional Network for Taxi Idle Time Prediction 计算机科学, 2021, 48(7): 112-117. https://doi.org/10.11896/jsjkx.201000089 |
[7] | 程思伟, 葛唯益, 王羽, 徐建. BGCN:基于BERT和图卷积网络的触发词检测 BGCN:Trigger Detection Based on BERT and Graph Convolution Network 计算机科学, 2021, 48(7): 292-298. https://doi.org/10.11896/jsjkx.200500133 |
[8] | 宋元隆, 吕光宏, 王桂芝, 贾吾财. 基于图卷积神经网络的SDN网络流量预测 SDN Traffic Prediction Based on Graph Convolutional Network 计算机科学, 2021, 48(6A): 392-397. https://doi.org/10.11896/jsjkx.200800090 |
[9] | 吕明琪, 洪照雄, 陈铁明. 一种融合时空关联与社会事件的交通流预测方法 Traffic Flow Forecasting Method Combining Spatio-Temporal Correlations and Social Events 计算机科学, 2021, 48(2): 264-270. https://doi.org/10.11896/jsjkx.200300098 |
[10] | 叶松涛, 周扬正, 范红杰, 陈正雷. 融合因果关系和时空图卷积网络的人体动作识别 Joint Learning of Causality and Spatio-Temporal Graph Convolutional Network for Skeleton- based Action Recognition 计算机科学, 2021, 48(11A): 130-135. https://doi.org/10.11896/jsjkx.201200205 |
[11] | 付颖, 王红玲, 王中卿. 基于单词-章节关联的科技论文摘要 Scientific Paper Summarization Using Word-Section Association 计算机科学, 2021, 48(10): 59-66. https://doi.org/10.11896/jsjkx.200900180 |
[12] | 蒋宗礼, 李苗苗, 张津丽. 基于融合元路径图卷积的异质网络表示学习 Graph Convolution of Fusion Meta-path Based Heterogeneous Network Representation Learning 计算机科学, 2020, 47(7): 231-235. https://doi.org/10.11896/jsjkx.190600085 |
[13] | 王俊丽,魏绍臣,管敏. 基于图排序算法的自动文摘研究综述 Survey on Graph Model-based Document Summarization 计算机科学, 2015, 42(12): 1-7. |
[14] | 谢浩,孙伟. 基于段落-句子互增强的自动文摘算法 Paragraph-Sentence Mutual Reinforcement Based Automatic Summarization Algorithm 计算机科学, 2013, 40(Z11): 246-250. |
[15] | 高晶,房俊. 基于非完全吸收马尔科夫链的多文档自动文摘算法 Partial Absorbing Markov Chain Based Multi-document Summarization 计算机科学, 2013, 40(5): 201-205. |
|