计算机科学 ›› 2022, Vol. 49 ›› Issue (6A): 172-177.doi: 10.11896/jsjkx.210400117

• 智能计算 • 上一篇    下一篇

基于图卷积网络的专利摘要自动生成研究

李健智, 王红玲, 王中卿   

  1. 苏州大学计算机科学与技术学院 江苏 苏州 215006
  • 出版日期:2022-06-10 发布日期:2022-06-08
  • 通讯作者: 王红玲(hlwang@suda.edu.cn)
  • 作者简介:(jzli0220@stu.suda.edu.cn)
  • 基金资助:
    国家自然科学基金(61976146);国家自然科学基金青年基金项目(61806137)

Automatic Generation of Patent Summarization Based on Graph Convolution Network

LI Jian-zhi, WANG Hong-ling, WANG Zhong-qing   

  1. School of Computer Science and Technology,Soochow University,Suzhou,Jiangsu 215006,China
  • Online:2022-06-10 Published:2022-06-08
  • About author:LI Jian-zhi,born in 1997,postgraduate,is a member of China Computer Federation.His main research interests include natural language processing and text summarization
    WANG Hong-ling,born in 1975,assistant professor,is a member of China Computer Federation.Her main research interests include natural language processing and information retrieval.
  • Supported by:
    National Natural Science Foundation of China(61976146) and Young Scientists Fund of the National Natural Science Foundation of China(61806137).

摘要: 专利说明书含有大量有用的信息,但由于篇幅很长,人们很难快速获取其中的有效信息。专利摘要是对一份完整专利说明书的总结与概述,权利要求书作为说明书的一部分,其记载的内容确定了专利申请文件的保护范围,含有专利文献的主要信息。同时经研究发现,专利的权利要求书具有特殊的结构。因此,提出了一种基于图卷积网络的专利摘要自动生成方法,旨在通过专利的权利要求书及其结构信息来生成专利摘要。该方法首先获取权利要求书中的结构信息,在编码阶段引入图卷积神经网络来融合语义信息和结构信息,从而生成高质量的专利摘要。实验结果表明,与目前主流的抽取式摘要方法和传统的编码器-解码器生成方法相比,该方法在ROUGE评价指标上有显著提高。

关键词: 权利要求书, 图卷积网络, 专利摘要, 自动文摘

Abstract: The patent specification contains much useful information.However,due to the long space,it is difficult to obtain effective information quickly.Patent summarization is a summary of a complete patent specification.The right-claiming document determines the scope of protection of the patent application documents.It found that there is a special structure in the right-clai-ming document.Therefore,this paper proposes a method of automatic generation of patent summarization based on graph convolution network.The patent summarization is generated through the patent right-claiming document and its structural information.Firstly,this model obtains patent structural information,and the graph convolution neural network is introduced in the encoder to fuse the serialization information and structural information,to improve the quality of summarization.Experimental results show that this method has a significant improvement in ROUGE evaluation compared with the current main stream extractive summarization method and the traditional encoder-decoder abstractive summarization.

Key words: Automatic text summarization, Graph convolution network, Patent summarization, Right-claiming document

中图分类号: 

  • TP391
[1] ELAMn J L.Finding Structure in Time[J].Cognitive Science,1990,14(2):179-211.
[2] KIPF T N,WELLING M.Semi-Supervised Classification withGraph Convolutional Networks[J].arXiv:1609.02907,2016.
[3] HOCHREITER S,SCHMIDHUBERJ.Long Short-Term Me-mory[J].Neural Computation,1997,9(8):1735-1780.
[4] SHU Y F,WANG Z Q.Research on Chinese Patent Summariza-tion Based on Patented Structure[J].Computer Science,2020,47(S1):45-48.
[5] WANGY Z.Research on Abstract Generation Technology Based on Patent Text[D].Harbin:Harbin Institute of Technology,2020.
[6] ZHANG E B.Research on Key Technologies of GenerationPatent Claims[D].Harbin:Harbin Institute of Technology,2020.
[7] LIU T,WU Y,WANG K Z.Automatic Summarization[J].Information Science,1998(1):63-69.
[8] WANG H L,ZHOU G D,ZHU Q M.Chinese Multi-document Summarization Based on Redundancy Control[J].Journal of Chinese Information Processing,2012,26(2):92-96.
[9] PAGE L,BRIN S,MOTWANI R,et al.The PageRank CitationRanking:Bringing Order to the Web[C]//Proceedings of Technical Report.Stanford Digital Library Technologies,1998.
[10] MIHALCEA R,TARAUP.TextRank:Bringing Order into Texts[C]//Proceedings Conference on Empirical Methods in Natural Language Processing.2004.
[11] GÜNES Erkan,RADEV D R.LexPageRank:Prestige in multi-document text summarization[C]//Conference on Empirical Methods in Natural Language Processing.DBLP,2004.
[12] LIU F,FLANIGAN J,THOMSON S,et al.Toward Abstractive Summarization Using Semantic Representations[C]//Procee-dings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies,2015:1077-1086.
[13] RUSH A M,CHOPRA S,WESTON J.A neural attention model for abstractive sentence summarization[C]//Proceedings of the 2015 Conference Empirical Methods in Natural Language Processing.2015:379-389.
[14] CHOPRA S,AULI M,RUSHA M.Abstractive sentence summarization with attentive recurrent neural networks[C]//Proceedings of the 2016 Conference of the North American Chapter of Association for Computational Linguistics:Human Language Technologies.2016:93-98.
[15] NALLAPATI R,ZHOU B,DOS SANTOS C,et al.Abstractive text summarization using sequence-to-sequence RNNS and beyond[C]//Proceedings of the 20th SIGNLL Conference on Computational Natural Language Learning.2016:280-290.
[16] GU J,LU Z,LI H,et al.Incorporating Copying Mechanism in Sequence-to-Sequence Learning[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics.2016:1631-1640.
[17] SEE A,LIU P J,MANNING C D.Get To The Point:Summarization with Pointer-Generator Networks[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics.2017:1073-1083.
[18] GULCEHRE C,AHN S,NALLAPATIR,et al.Pointing the un-known words[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics.2016:140-149.
[19] ZENG W,LUO W,FIDLER S,et al.Efficient summarizationwith read-again and copy mechanism[J].arXiv:1611.03382,2016.
[20] COHAN A,DERNONCOURT F,KIM D S,et al.A Discourse-Aware Attention Model for Abstractive Summarization of Long Documents[C]//Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.2018:615-621.
[21] WEI W,WANG H,WANG Z.Abstractive Summarization via Discourse Relation and Graph Convolutional Networks[M]//Natural Language Processing and Chinese Computing,9th CCF International Conference,NLPCC 2020.2020.
[22] WU R S,ZHANG Y F,WANG H L,et al.Abstractive Summarization Based on Hierarchical Structure[J]Journal of Chinese Information Processing,2019,33(10):90-98.
[23] ZHANG Y,WANG Z Q,WANG H L.Single Document Extractive Summarization with Satellite and Nuclear Relations[J].Journal of Chinese Information Processing,2019,33(10):90-98.
[24] VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[J].arXiv:1706.03762,2017.
[25] LIN C Y.Automatic evaluation of summaries[C]//Workshop on Text Summarization Branches Out at ACL.US,2010.
[26] KINGMA D,BA J.Adam:A Method for Stochastic Optimization[J].arXiv:1412.6980,2014.
[1] 汪鸣, 彭舰, 黄飞虎.
基于多时间尺度时空图网络的交通流量预测模型
Multi-time Scale Spatial-Temporal Graph Neural Network for Traffic Flow Prediction
计算机科学, 2022, 49(8): 40-48. https://doi.org/10.11896/jsjkx.220100188
[2] 赵小虎, 叶圣, 李晓.
多算法融合的骨骼重建信息动作分类方法
Multi-algorithm Fusion Behavior Classification Method for Body Bone Information Reconstruction
计算机科学, 2022, 49(6): 269-275. https://doi.org/10.11896/jsjkx.210500070
[3] 周海榆, 张道强.
面向多中心数据的超图卷积神经网络及应用
Multi-site Hyper-graph Convolutional Neural Networks and Application
计算机科学, 2022, 49(3): 129-133. https://doi.org/10.11896/jsjkx.201100152
[4] 潘志豪, 曾碧, 廖文雄, 魏鹏飞, 文松.
基于交互注意力图卷积网络的方面情感分类
Interactive Attention Graph Convolutional Networks for Aspect-based Sentiment Classification
计算机科学, 2022, 49(3): 294-300. https://doi.org/10.11896/jsjkx.210100180
[5] 解宇, 杨瑞玲, 刘公绪, 李德玉, 王文剑.
基于动态拓扑图的人体骨架动作识别算法
Human Skeleton Action Recognition Algorithm Based on Dynamic Topological Graph
计算机科学, 2022, 49(2): 62-68. https://doi.org/10.11896/jsjkx.210900059
[6] 宋龙泽, 万怀宇, 郭晟楠, 林友芳.
面向出租车空载时间预测的多任务时空图卷积网络
Multi-task Spatial-Temporal Graph Convolutional Network for Taxi Idle Time Prediction
计算机科学, 2021, 48(7): 112-117. https://doi.org/10.11896/jsjkx.201000089
[7] 程思伟, 葛唯益, 王羽, 徐建.
BGCN:基于BERT和图卷积网络的触发词检测
BGCN:Trigger Detection Based on BERT and Graph Convolution Network
计算机科学, 2021, 48(7): 292-298. https://doi.org/10.11896/jsjkx.200500133
[8] 宋元隆, 吕光宏, 王桂芝, 贾吾财.
基于图卷积神经网络的SDN网络流量预测
SDN Traffic Prediction Based on Graph Convolutional Network
计算机科学, 2021, 48(6A): 392-397. https://doi.org/10.11896/jsjkx.200800090
[9] 吕明琪, 洪照雄, 陈铁明.
一种融合时空关联与社会事件的交通流预测方法
Traffic Flow Forecasting Method Combining Spatio-Temporal Correlations and Social Events
计算机科学, 2021, 48(2): 264-270. https://doi.org/10.11896/jsjkx.200300098
[10] 叶松涛, 周扬正, 范红杰, 陈正雷.
融合因果关系和时空图卷积网络的人体动作识别
Joint Learning of Causality and Spatio-Temporal Graph Convolutional Network for Skeleton- based Action Recognition
计算机科学, 2021, 48(11A): 130-135. https://doi.org/10.11896/jsjkx.201200205
[11] 付颖, 王红玲, 王中卿.
基于单词-章节关联的科技论文摘要
Scientific Paper Summarization Using Word-Section Association
计算机科学, 2021, 48(10): 59-66. https://doi.org/10.11896/jsjkx.200900180
[12] 蒋宗礼, 李苗苗, 张津丽.
基于融合元路径图卷积的异质网络表示学习
Graph Convolution of Fusion Meta-path Based Heterogeneous Network Representation Learning
计算机科学, 2020, 47(7): 231-235. https://doi.org/10.11896/jsjkx.190600085
[13] 王俊丽,魏绍臣,管敏.
基于图排序算法的自动文摘研究综述
Survey on Graph Model-based Document Summarization
计算机科学, 2015, 42(12): 1-7.
[14] 谢浩,孙伟.
基于段落-句子互增强的自动文摘算法
Paragraph-Sentence Mutual Reinforcement Based Automatic Summarization Algorithm
计算机科学, 2013, 40(Z11): 246-250.
[15] 高晶,房俊.
基于非完全吸收马尔科夫链的多文档自动文摘算法
Partial Absorbing Markov Chain Based Multi-document Summarization
计算机科学, 2013, 40(5): 201-205.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!