Computer Science ›› 2020, Vol. 47 ›› Issue (8): 56-61.doi: 10.11896/jsjkx.200200112
Previous Articles Next Articles
CHENG Sheng-gan1, YU Hao-ran2, WEI Jian-wen1, James LIN1
CLC Number:
[1] FENG L, ZHU W.The simulation techniques and applications in modern cosmology.SCIENTIA SINICA Physica, Mechanica &Astronomica, 2013(6):1. [2] SI Y, WEI J, SEE S, et al.Parallel Design and Optimization of Galaxy Group Finding Algorithm on Comparation of SGI and Distributed-memory Cluster.Computer Science, 2017, 44(10):80-84. [3] YANG X, FENG L, ZHE Y.Wavelet power spectrum analysis of cosmic large-scale structures:methods and numerical simulation tests.Science in China(Series A), 2001, 31(3):278-288. [4] HUANG W.Neutrino Mass and the Superstructure of the Universe.HIGH Energy Physics and Nnclear Physics, 1991, 15(12):1135-1136. [5] YU H R, EMBERSON J, INMAN D, et al.Differential neutrino condensation onto cosmic structure.Nature Astronomy, 2017, 1(7):1-5. [6] HARNOIS-DRAPS J, PEN U L, ILIEV I T, et al.High-per-formance P3M N-body code:CUBEP3M.Monthly Notices of the Royal Astronomical Society, 2013, 436(1):540-559. [7] YU H R, PEN U L, WANG X.CUBE:An Information-opti-mized Parallel Cosmological N-body Algorithm.The Astrophysical Journal Supplement Series, 2018, 237(2):24. [8] PEEBLES P J, YU J.Primeval adiabatic perturbation in an expanding universe.The Astrophysical Journal, 1970, 162:815. [9] ISHIYAMA T, ENOKI M, KOBAYASHI M A, et al.The ν2GC simulations:Quantifying the dark side of the universe in the [10] Planck cosmology.Publications of the Astronomical Society of Japan, 2015, 67(4):61. [11] HEITMANN K, FRONTIERE N, SEWELL C, et al.The Qcontinuum simulation:harnessing the power of GPU accelerated supercomputers.The Astrophysical Journal Supplement Series, 2015, 219(2):34. [12] HEITMANN K, FINKEL H, POPE A, et al.The Outer RimSimulation:A Path to Many-core Supercomputers.The Astrophysical Journal Supplement Series, 2019, 245(1):16. [13] SPRINGEL V.The cosmological simulation code GADGET-2.Monthly Notices of the Royal Astronomical Society, 2005, 364(4):1105-1134. [14] ISHIYAMA T, NITADORI K, MAKINO J.4.45 Pflops astrophysical N-body simulation on K computer-The gravitational trillion-body problem∥Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis.2012:1-10. [15] LINDSTROM P.Fixed-rate compressed floating-point arrays.IEEE Transactions on Visualization and Computer Graphi-cs, 2014, 20(12):2674-2683. [16] LINDSTROM P, ISENBURG M.Fast and efficient compression of floating-point data.IEEE Transactions on Visualization and Computer Graphics, 2006, 12(5):1245-1250. [17] PIPPIG M.PFFT:An extension of FFTW to massively parallel architectures.SIAM Journal on Scientific Computing, 2013, 35(3):C213-C236. [18] EMBERSON J, YU H-R, INMAN D, et al.Cosmological neutrino simulations at extreme scale.Research in Astronomy and Astrophysics, 2017, 17(8):85. [19] WANG Y, LIN J, CAI L, et al.Porting and Optimizing GTC-P on TaihuLinght Supercomputer with Sunway OpenACC.Journal of Computer Research and Development, 2018, 55(4):875-884. [20] MENG D, WEN M, WEI J, et al.Porting and Optimizing OpenFOAM on Sunway TaihuLight System.Computer Science, 2017, 44(10):64-70. |
[1] | CHEN Zhi-qiang, HAN Meng, LI Mu-hang, WU Hong-xin, ZHANG Xi-long. Survey of Concept Drift Handling Methods in Data Streams [J]. Computer Science, 2022, 49(9): 14-32. |
[2] | WANG Ming, WU Wen-fang, WANG Da-ling, FENG Shi, ZHANG Yi-fei. Generative Link Tree:A Counterfactual Explanation Generation Approach with High Data Fidelity [J]. Computer Science, 2022, 49(9): 33-40. |
[3] | ZHANG Jia, DONG Shou-bin. Cross-domain Recommendation Based on Review Aspect-level User Preference Transfer [J]. Computer Science, 2022, 49(9): 41-47. |
[4] | ZHOU Fang-quan, CHENG Wei-qing. Sequence Recommendation Based on Global Enhanced Graph Neural Network [J]. Computer Science, 2022, 49(9): 55-63. |
[5] | SONG Jie, LIANG Mei-yu, XUE Zhe, DU Jun-ping, KOU Fei-fei. Scientific Paper Heterogeneous Graph Node Representation Learning Method Based onUnsupervised Clustering Level [J]. Computer Science, 2022, 49(9): 64-69. |
[6] | CHAI Hui-min, ZHANG Yong, FANG Min. Aerial Target Grouping Method Based on Feature Similarity Clustering [J]. Computer Science, 2022, 49(9): 70-75. |
[7] | ZHENG Wen-ping, LIU Mei-lin, YANG Gui. Community Detection Algorithm Based on Node Stability and Neighbor Similarity [J]. Computer Science, 2022, 49(9): 83-91. |
[8] | LYU Xiao-feng, ZHAO Shu-liang, GAO Heng-da, WU Yong-liang, ZHANG Bao-qi. Short Texts Feautre Enrichment Method Based on Heterogeneous Information Network [J]. Computer Science, 2022, 49(9): 92-100. |
[9] | XU Tian-hui, GUO Qiang, ZHANG Cai-ming. Time Series Data Anomaly Detection Based on Total Variation Ratio Separation Distance [J]. Computer Science, 2022, 49(9): 101-110. |
[10] | NIE Xiu-shan, PAN Jia-nan, TAN Zhi-fang, LIU Xin-fang, GUO Jie, YIN Yi-long. Overview of Natural Language Video Localization [J]. Computer Science, 2022, 49(9): 111-122. |
[11] | CAO Xiao-wen, LIANG Mei-yu, LU Kang-kang. Fine-grained Semantic Reasoning Based Cross-media Dual-way Adversarial Hashing Learning Model [J]. Computer Science, 2022, 49(9): 123-131. |
[12] | ZHOU Xu, QIAN Sheng-sheng, LI Zhang-ming, FANG Quan, XU Chang-sheng. Dual Variational Multi-modal Attention Network for Incomplete Social Event Classification [J]. Computer Science, 2022, 49(9): 132-138. |
[13] | DAI Yu, XU Lin-feng. Cross-image Text Reading Method Based on Text Line Matching [J]. Computer Science, 2022, 49(9): 139-145. |
[14] | QU Qian-wen, CHE Xiao-ping, QU Chen-xin, LI Jin-ru. Study on Information Perception Based User Presence in Virtual Reality [J]. Computer Science, 2022, 49(9): 146-154. |
[15] | ZHOU Le-yuan, ZHANG Jian-hua, YUAN Tian-tian, CHEN Sheng-yong. Sequence-to-Sequence Chinese Continuous Sign Language Recognition and Translation with Multi- layer Attention Mechanism Fusion [J]. Computer Science, 2022, 49(9): 155-161. |
|