Computer Science ›› 2021, Vol. 48 ›› Issue (7): 118-123.doi: 10.11896/jsjkx.200600155
• Database & Big Data & Data Science • Previous Articles Next Articles
SANG Chun-yan1, XU Wen1, JIA Chao-long1, WEN Jun-hao2
CLC Number:
[1]STAI E,MILAIOU E,KARYOTIS V,et al.Temporal dynamics of information diffusion in twitter:Modeling and experimentation[J].IEEE Transactions on Computational Social Systems,2018,5(1):256-264. [2]KUHNLE A,ALIM M A,LI X,et al.Multiplex influence maximization in online social networks with heterogeneous diffusion models[J].IEEE Transactions on Computational Social Systems,2018,5(2):418-429. [3]MATSUBARA Y,SAKURAI Y,PRAKASH B A,et al.Nonli-near dynamics of information diffusion in social networks[J].ACM Transactions on the Web (TWEB),2017,11(2):1-40. [4]JIANG Y,JIANG J C.Understanding social networks from a multiagent perspective[J].IEEE Transactions on Parallel and Distributed Systems,2013,25(10):2743-2759. [5]XIONG F,WANG X M,CHENG J J.Subtle role of latency for information diffusion in online social neworks [J].Chinese Physics B,2016,25(10):108904. [6]LAGNIER C,DENOYER L,GAUSSIER E,et al.Predicting information diffusion in social networks using content and user’s profiles[C]//European Conference on Information Retrieval.Berlin,Heidelberg:Springer,2013:74-85. [7]WANG Z,CHEN C,LI W.A Sequential Neural InformationDiffusion Model with Structure Attention[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management.2018:1795-1798. [8]WANG J,ZHENG V W,LIU Z,et al.Topological recurrentneural network for diffusion prediction[C]//2017 IEEE International Conference on Data Mining (ICDM).IEEE,2017:475-484. [9]BOURIGAULT S,LAGNIER C,LAMPRIER S,et al.Learning social network embeddings for predicting information diffusion[C]//Proceedings of the 7th ACM International Conference on Web Search and Data Mining.2014:393-402. [10]SUBBIAN K,PRAKASH B A,ADAMIC L.Detecting large reshare cascades in social networks[C]//Proceedings of the 26th International Conference on World Wide Web.2017:597-605. [11]ANDERSON P,HE X,BUEHLER C,et al.Bottom-up and top-down attention for image captioning and visual question answe-ring[C]//Proceedings of the IEEE Confe-rence on Computer Vision and Pattern Recognition.2018:6077-6086. [12]WANG F,JIANG M,QIAN C,et al.Residual attention network for image classification[C]//Proceedings of the IEEE Confe-rence on Computer Vision and Pattern Recognition.2017:3156-3164. [13]LUONG M T,PHAM H,MANNING C D.Effective approaches to attention-based neural machine translation[C]// Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing.2015:1412-1421. [14]PARK S H,KIM B D,KANG C M,et al.Sequence-to-sequence prediction of vehicle trajectory via LSTM encoder-decoder architecture[C]//2018 IEEE Intelligent Vehicles Symposium (IV).IEEE,2018:1672-1678. [15]GASKÓN,KÉPES T,SUCIU M A,et al.Considerations about using the Shapley Value for Influence Maximization in the case of the Weighted Cascade Model[C]//2020 IEEE 18th World Symposium on Applied Machine Intelligence and Informatics (SAMI).IEEE,2020:257-262. [16]BOZORGI A,SAMET S,KWISTHOUT J,et al.Community-based influence maximization in social networks under a compe-titive linear threshold model[J].Knowledge-Based Systems,2017,134:149-158. [17]GOMEZ-RODRIGUEZ M,BALDUZZI D,SCHÖLKOPF B.Uncovering the temporal dynamics of diffusion networks[C]// Proceedings of the 28th International Conference on Internatio-nal Conference on Machine Learning.2011:561-568. [18]GOMEZ-RODRIGUEZ M,LESKOVEC J,KRAUSE A.Infer-ring networks of diffusion and influence[J].ACM Transactions on Knowledge Discovery from Data (TKDD),2012,5(4):1-37. [19]BOURIGAULT S,LAMPRIER S,GALLINARI P.Representation learning for information diffusion through social networks:an embedded cascade model[C]//Proceedings of the Ninth ACM international conference on Web Search and Data Mining.2016:573-582. [20]SAGHEER A,KOTB M.Time series forecasting of petroleum production using deep LSTM recurrent networks[J].Neurocomputing,2019,323:203-213. [21]WANG H,ZHANG F,ZHANG M,et al.Knowledge-awaregraph neural networks with label smoothness regularization for recommender systems[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2019:968-977. [22]WANG Z,LI W.Hierarchical Diffusion Attention Network[C]//IJCAI.2019:3828-3834. [23]YANG C,SUN M,LIU H,et al.Neural Diffusion Model for Microscopic Cascade Study[J].IEEE Transactions on Knowledge and Data Engineering,2021,33(3):1128-1139. [24]OPSAHL T,PANZARASA P.Clustering in weighted networks[J].Social networks,2009,31(2):155-163. [25]DU N,DAI H,TRIVEDI R,et al.Recurrent marked temporal point processes:Embedding event history to vector[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2016:1555-1564. [26]HU W,SINGH K K,XIAO F,et al.Who will share my image? Predicting the content diffusion path in online social networks[C]//Proceedings of the Eleventh ACM International Confe-rence on Web Search and Data Mining.2018:252-260. [27]DEY R,SALEMT F M.Gate-variants of gated recurrent unit(GRU) neural networks[C]//2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS).IEEE,2017:1597-1600. [28]VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[C]//Advances in Neural Information Processing Systems.2017:5998-6008. |
[1] | RAO Zhi-shuang, JIA Zhen, ZHANG Fan, LI Tian-rui. Key-Value Relational Memory Networks for Question Answering over Knowledge Graph [J]. Computer Science, 2022, 49(9): 202-207. |
[2] | TANG Ling-tao, WANG Di, ZHANG Lu-fei, LIU Sheng-yun. Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy [J]. Computer Science, 2022, 49(9): 297-305. |
[3] | ZHOU Fang-quan, CHENG Wei-qing. Sequence Recommendation Based on Global Enhanced Graph Neural Network [J]. Computer Science, 2022, 49(9): 55-63. |
[4] | DAI Yu, XU Lin-feng. Cross-image Text Reading Method Based on Text Line Matching [J]. Computer Science, 2022, 49(9): 139-145. |
[5] | ZHOU Le-yuan, ZHANG Jian-hua, YUAN Tian-tian, CHEN Sheng-yong. Sequence-to-Sequence Chinese Continuous Sign Language Recognition and Translation with Multi- layer Attention Mechanism Fusion [J]. Computer Science, 2022, 49(9): 155-161. |
[6] | XU Yong-xin, ZHAO Jun-feng, WANG Ya-sha, XIE Bing, YANG Kai. Temporal Knowledge Graph Representation Learning [J]. Computer Science, 2022, 49(9): 162-171. |
[7] | XIONG Li-qin, CAO Lei, LAI Jun, CHEN Xi-liang. Overview of Multi-agent Deep Reinforcement Learning Based on Value Factorization [J]. Computer Science, 2022, 49(9): 172-182. |
[8] | WANG Jian, PENG Yu-qi, ZHAO Yu-fei, YANG Jian. Survey of Social Network Public Opinion Information Extraction Based on Deep Learning [J]. Computer Science, 2022, 49(8): 279-293. |
[9] | HAO Zhi-rong, CHEN Long, HUANG Jia-cheng. Class Discriminative Universal Adversarial Attack for Text Classification [J]. Computer Science, 2022, 49(8): 323-329. |
[10] | JIANG Meng-han, LI Shao-mei, ZHENG Hong-hao, ZHANG Jian-peng. Rumor Detection Model Based on Improved Position Embedding [J]. Computer Science, 2022, 49(8): 330-335. |
[11] | WANG Ming, PENG Jian, HUANG Fei-hu. Multi-time Scale Spatial-Temporal Graph Neural Network for Traffic Flow Prediction [J]. Computer Science, 2022, 49(8): 40-48. |
[12] | ZHU Cheng-zhang, HUANG Jia-er, XIAO Ya-long, WANG Han, ZOU Bei-ji. Deep Hash Retrieval Algorithm for Medical Images Based on Attention Mechanism [J]. Computer Science, 2022, 49(8): 113-119. |
[13] | SUN Qi, JI Gen-lin, ZHANG Jie. Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection [J]. Computer Science, 2022, 49(8): 172-177. |
[14] | YAN Jia-dan, JIA Cai-yan. Text Classification Method Based on Information Fusion of Dual-graph Neural Network [J]. Computer Science, 2022, 49(8): 230-236. |
[15] | HU Yan-yu, ZHAO Long, DONG Xiang-jun. Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification [J]. Computer Science, 2022, 49(7): 73-78. |
|