Computer Science ›› 2022, Vol. 49 ›› Issue (6A): 397-406.doi: 10.11896/jsjkx.210300270
• Image Processing & Multimedia Technology • Previous Articles Next Articles
XIAO Zhi-hong, HAN Ye-tong, ZOU Yong-pan
CLC Number:
[1] WANG Y,WU K,NI L M.Wifall:Device-free fall detection bywireless networks[J].IEEE Transactions on Mobile Computing,2016,16(2):581-594. [2] WANG W,LIU A X,SHAHZAD M,et al.Understanding andmodeling of wifi signal based human activity recognition[C]//Proc of the 21st Annual Int Conf on Mobile Computing and Networking.New York:ACM,2015:65-76. [3] ZOU H,ZHOU Y,YANG J,et al.Poster:WiFi-based Device-Free Human Activity Recognition via Automatic Representation Learning[C]//the 23rd Annual Int Conf.New York:ACM,2017. [4] FANG B,LANE N D,ZHANG M,et al.BodyScan:Enabling radio-based sensing on wearable devices for contactless activity and vital sign monitoring[C]//Proc. of the 14th Annual Int. Conf. on Mobile Systems,Applications,and Services.New York:ACM,2016:97-110. [5] ALI K,LIU A X,WANG W,et al.Keystroke recognition using wifi signals[C]//Proc of the 21st Annual Int Conf. on Mobile Computing and Networking.New York:ACM,2015:90-102. [6] ZHANG L,WANG C,MA M,et al.WiDIGR:Direction-Inde-pendent Gait Recognition System Using Commercial Wi-Fi Devices[J].IEEE Internet of Things Journal,2020,7(2):1178-1191. [7] PU Q,GUPTA S,GOLLAKOTA S,et al.Whole-home gesture recognition using wireless signals[C]//Proc. of the 19th Annual Int. Conf. on Mobile Computing & Networking.New York:ACM,2013:27-38. [8] LU H,PAN W,LANE N D,et al.SoundSense:scalable sound sensing for people-centric applications on mobile phones[C]//Proc. of the 7th Int. Conf. on Mobile Systems,Applications,and Services.New York:ACM,2009:165-178. [9] NI B,WANG G,MOULIN P.Rgbd-hudaact:A color-depthvideo database for human daily activity recognition[C]//2011 IEEE Int. Conf. on Computer Vision Workshops(ICCV workshops).Piscataway,NJ:IEEE,2011:1147-1153. [10] VOIGT P,BUDDE M,PESCARA E,et al.Feasibility of human activity recognition using wearable depth cameras[C]//Proc. of the 2018 ACM Int. Symp. on Wearable Computers.New York:ACM,2018:92-95. [11] ROGGEN D,CALATRONI A,ROSSI M,et al.Collecting complex activity datasets in highly rich networked sensor environments[C]//2010 Seventh Int. Conf. on Networked Sensing Systems(INSS).Piscataway,NJ:IEEE,2010:233-240. [12] TAPIA E M,INTILLE S S,LARSON K.Activity recognition in the home using simple and ubiquitous sensors[C]//Int. Conf. on Pervasive Computing.Berlin:Springer,2004:158-175. [13] CHING Y T,CHENG C C,HE G W,et al.Full model for sensors placement and activities recognition[C]//Proc. of the 2017 ACM Int. Joint Conf. on Pervasive and Ubiquitous Computing and Proceedings of the 2017 ACM Int. Symp. on Wearable Computers.New York:ACM,2017:17-20. [14] KWAPISZ J R,WEISS G M,MOORE S A.Activity recognition using cell phone accelerometers[J].ACM SigKDD Explorations Newsletter,2011,12(2):74-82. [15] ANJUM A,ILYAS M U.Activity recognition using smartphone sensors[C]//2013 IEEE 10th Consumer Communications and Networking Conference(CCNC).Piscataway,NJ:IEEE,2013:914-919. [16] LEUTHEUSER H,SCHULDHAUS D,ESKOFIER B M.Hie-rarchical,multi-sensor based classification of daily life activities:comparison with state-of-the-art algorithms using a benchmark dataset[J].PloS One,2013,8(10):1-11. [17] INOUE S,UEDA N,NOHARA Y,et al.Mobile activity recognition for a whole day:recognizing real nursing activities with big dataset[C]//Proc. of the 2015 ACM Int. Joint Conf. on Pervasive and Ubiquitous Computing.New York:ACM,2015:1269-1280. [18] YAO L,NIE F,SHENG Q Z,et al.Learning from less for better:semi-supervised activity recognition via shared structure discovery[C]//Proc. of the 2016 ACM Int. Joint Conf. on Pervasive and Ubiquitous Computing.New York:ACM,2016:13-24. [19] BAI L,YEUNG C,EFSTRATIOU C,et al.Motion2Vector:unsupervised learning in human activity recognition using wrist-sensing data[C]//Adjunct Proc. of the 2019 ACM Int. Joint Conf. on Pervasive and Ubiquitous Computing and Proc of the 2019 ACM Int Symp on Wearable Computers.New York:ACM,2019:537-542. [20] GUO H,CHEN L,PENG L,et al.Wearable sensor based multimodal human activity recognition exploiting the diversity of classifier ensemble[C]//Proc. of the 2016 ACM Int. Joint Conf. on Pervasive and Ubiquitous Computing.New York:ACM,2016:1112-1123. [21] LIU C,ZHANG L,LIU Z,et al.Lasagna:towards deep hierarchical understanding and searching over mobile sensing data[C]//Proc. of the 22nd Annual Int. Conf. on Mobile Computing and Networking.New York:ACM,2016:334-347. [22] LAVANIA C,THULASIDASAN S,LAMARCA A,et al.Aweakly supervised activity recognition framework for real-time synthetic biology laboratory assistance[C]//Proc. of the 2016 ACM Int. Joint Conf. on Pervasive and Ubiquitous Computing.New York:ACM,2016:37-48. [23] ZHENG H,WANG H,BLACK N.Human activity detection in smart home environment with self-adaptive neural networks[C]//2008 IEEE Int. Conf. on Networking,Sensing and Control.Piscataway,NJ:IEEE,2008:1505-1510. [24] JIANG W,YIN Z.Human activity recognition using wearable sensors by deep convolutional neural networks[C]//Proc. of the 23rd ACM Int. Conf on Multimedia.New York:ACM,2015:1307-1310. [25] YIN Y,XIE L,GU T,et al.AirContour:Building Contour-based Model for In-Air Writing Gesture Recognition[J].ACM Transa-ctions on Sensor Networks(TOSN),2019,15(4):1-25. [26] CHEN K,YAO L,ZHANG D,et al.A semisupervised recurrent convolutional attention model for human activity recognition[J].IEEE transactions on neural networks and learning systems,2019,31(5):1747-1756. [27] ORDÓÑEZ F J,ROGGEN D.Deep convolutional and lstm re-current neural networks for multimodal wearable activity recognition[J].Sensors,2016,16(1):115-140. [28] FAN X,WANG F,WANG F,et al.When RFID meets deep learning:Exploring cognitive intelligence for activity identification[J].IEEE Wireless Communications,2019,26(3):19-25. [29] OKITA T,INOUE S.Recognition of multiple overlapping activi-ties using compositional CNN-LSTM model[C]//Proc. of the 2017 ACM Int. Joint Conf. on Pervasive and Ubiquitous Computing and Proc. of the 2017 ACM Int. Symp. on Wearable Computers.New York:ACM,2017:165-168. [30] LAPUT G,AHUJA K,GOEL M,et al.Ubicoustics:Plug-and-play acoustic activity recognition[C]//Proc. of the 31st Annual ACM Symp. on User Interface Software and Technology.New York:ACM,2018:213-224. [31] MüNZNER S,SCHMIDT P,REISS A,et al.CNN-based sensor fusion techniques for multimodal human activity recognition[C]//Proc. of the 2017 ACM Int. Symp. on Wearable Computers.New York:ACM,2017:158-165. [32] ZENG M,GAO H,YU T,et al.Understanding and improving recurrent networks for human activity recognition by continuous attention[C]//Proc. of the 2018 ACM Int. Symp. on Wearable Computers.New York:ACM,2018:56-63. [33] XIE L,DONG X,WANG W,et al.Meta-activity recognition:A wearable approach for logic cognition-based activity sensing[C]//IEEE INFOCOM 2017-IEEE Conf on Computer Communications.Piscataway,NJ:IEEE,2017:1-9. [34] RIBONI D,SZTYLER T,CIVITARESE G,et al.Unsupervised recognition of interleaved activities of daily living through ontological and probabilistic reasoning[C]//Proc. of the 2016 ACM Int. Joint Conf. on Pervasive and Ubiquitous Computing.New York:ACM,2016:1-12. [35] YE J,STEVENSON G,DOBSON S.USMART:An unsuper-vised semantic mining activity recognition technique[J].ACM Transactions on Interactive Intelligent Systems(TiiS),2014,4(4):1-27. [36] IHIANLE I K,NAEEM U,ISLAM S.Ontology-driven activity recognition from patterns of object use[C]//Proc. of the 2017 ACM Int. Joint Conf. on Pervasive and Ubiquitous Computing and Proc. of the 2017 ACM Int. Symp. on Wearable Computers.New York:ACM,2017:654-657. [37] CIVITARESE G,PRESOTTO R,BETTINI C.Hybrid data-driven and context-aware activity recognition with mobile devices[C]//Adjunct Proc. of the 2019 ACM Int. Joint Conf. on Pervasive and Ubiquitous Computing and Proc. of the 2019 ACM Int. Symp. on Wearable Computers.New York:ACM,2019:266-267. [38] RUAN W,SHENG Q Z,YANG L,et al.AudioGest:enablingfine-grained hand gesture detection by decoding echo signal[C]//Proc. of the 2016 ACM Int. Joint Conf. on Pervasive and Ubiquitous Computing.New York:ACM,2016:474-485. [39] GUPTA S,MORRIS D,PATEL S,et al.Soundwave:using the doppler effect to sense gestures[C]//Proc. of the SIGCHI Conf. on Human Factors in Computing Systems.New York:ACM,2012:1911-1914. [40] ADIB F,KABELAC Z,KATABI D,et al.3D tracking via body radio reflections[C]//11th {USENIX} Symp on Networked Systems Design and Implementation({NSDI} 14).Berkeley,CA:USENIX Association,2014:317-329. [41] WANG Y,LIU J,CHEN Y,et al.E-eyes:device-free location-oriented activity identification using fine-grained wifi signatures[C]//Proc. of the 20th Annual Int. Conf. on Mobile Computing and Networking.New York:ACM,2014:617-628. [42] DING H,SHANGGUAN L,YANG Z,et al.Femo:A platform for free-weight exercise monitoring with rfids[C]//Proc. of the 13th ACM Conf. on Embedded Networked Sensor Systems.New York:ACM,2015:141-154. |
[1] | LENG Dian-dian, DU Peng, CHEN Jian-ting, XIANG Yang. Automated Container Terminal Oriented Travel Time Estimation of AGV [J]. Computer Science, 2022, 49(9): 208-214. |
[2] | NING Han-yang, MA Miao, YANG Bo, LIU Shi-chang. Research Progress and Analysis on Intelligent Cryptology [J]. Computer Science, 2022, 49(9): 288-296. |
[3] | HE Qiang, YIN Zhen-yu, HUANG Min, WANG Xing-wei, WANG Yuan-tian, CUI Shuo, ZHAO Yong. Survey of Influence Analysis of Evolutionary Network Based on Big Data [J]. Computer Science, 2022, 49(8): 1-11. |
[4] | LI Yao, LI Tao, LI Qi-fan, LIANG Jia-rui, Ibegbu Nnamdi JULIAN, CHEN Jun-jie, GUO Hao. Construction and Multi-feature Fusion Classification Research Based on Multi-scale Sparse Brain Functional Hyper-network [J]. Computer Science, 2022, 49(8): 257-266. |
[5] | ZHANG Guang-hua, GAO Tian-jiao, CHEN Zhen-guo, YU Nai-wen. Study on Malware Classification Based on N-Gram Static Analysis Technology [J]. Computer Science, 2022, 49(8): 336-343. |
[6] | CHEN Ming-xin, ZHANG Jun-bo, LI Tian-rui. Survey on Attacks and Defenses in Federated Learning [J]. Computer Science, 2022, 49(7): 310-323. |
[7] | LI Ya-ru, ZHANG Yu-lai, WANG Jia-chen. Survey on Bayesian Optimization Methods for Hyper-parameter Tuning [J]. Computer Science, 2022, 49(6A): 86-92. |
[8] | ZHAO Lu, YUAN Li-ming, HAO Kun. Review of Multi-instance Learning Algorithms [J]. Computer Science, 2022, 49(6A): 93-99. |
[9] | YAO Ye, ZHU Yi-an, QIAN Liang, JIA Yao, ZHANG Li-xiang, LIU Rui-liang. Android Malware Detection Method Based on Heterogeneous Model Fusion [J]. Computer Science, 2022, 49(6A): 508-515. |
[10] | YANG Han, WAN You, CAI Jie-xuan, FANG Ming-yu, WU Zhuo-chao, JIN Yang, QIAN Wei-xing. Pedestrian Navigation Method Based on Virtual Inertial Measurement Unit Assisted by GaitClassification [J]. Computer Science, 2022, 49(6A): 759-763. |
[11] | WANG Fei, HUANG Tao, YANG Ye. Study on Machine Learning Algorithms for Life Prediction of IGBT Devices Based on Stacking Multi-model Fusion [J]. Computer Science, 2022, 49(6A): 784-789. |
[12] | XU Jie, ZHU Yu-kun, XING Chun-xiao. Application of Machine Learning in Financial Asset Pricing:A Review [J]. Computer Science, 2022, 49(6): 276-286. |
[13] | XING Yun-bing, LONG Guang-yu, HU Chun-yu, HU Li-sha. Human Activity Recognition Method Based on Class Increment SVM [J]. Computer Science, 2022, 49(5): 78-83. |
[14] | LI Ye, CHEN Song-can. Physics-informed Neural Networks:Recent Advances and Prospects [J]. Computer Science, 2022, 49(4): 254-262. |
[15] | YAO Xiao-ming, DING Shi-chang, ZHAO Tao, HUANG Hong, LUO Jar-der, FU Xiao-ming. Big Data-driven Based Socioeconomic Status Analysis:A Survey [J]. Computer Science, 2022, 49(4): 80-87. |
|