Computer Science ›› 2022, Vol. 49 ›› Issue (8): 1-11.doi: 10.11896/jsjkx.210700240

• Database & Big Data & Data Science • Previous Articles     Next Articles

Survey of Influence Analysis of Evolutionary Network Based on Big Data

HE Qiang1,2, YIN Zhen-yu1, HUANG Min4, WANG Xing-wei3, WANG Yuan-tian2, CUI Shuo2, ZHAO Yong3   

  1. 1 Shenyang Institute of Computing Technology Co. Ltd.,CAS,Shenyang 110168,China
    2 College of Medicine and Biological Information Engineering,Northeastern University,Shenyang 110169,China
    3 College of Computer Science and Engineering,Northeastern University,Shenyang 110169,China
    4 College of Information Science and Engineering,Northeastern University,Shenyang 110819,China
  • Received:2021-07-25 Revised:2022-05-08 Published:2022-08-02
  • About author:HE Qiang,born in 1991,Ph.D,associate professor,is a member of China Computer Federation.His main research interests include social networks and machine learning.
    YIN Zhen-yu,born in 1979,Ph.D,is a senior member of China Computer Fe-deration.His main research interests include industrial embedded systems,industrial Internet of things,etc.
  • Supported by:
    National Key Research and Development Program(2021YFC3300300),Doctor Startup Foundation of Liaoning Province(2021-BS-055),China Postdoctoral Science Foundation(2021M693318) and Fundamental Funds for the Central Universities(N2119004,N2119007).

Abstract: One of the most important technologies in modern information and service industry is social influence analysis.More and more researchers in social networks focus on social influence.Real social networks are evolving rather than static.The proposal of evolutionary network also brings new challenges and opportunities.At the same time,the massive social information in the evolutionary network also provides strong support for the rapid development of big data analysis technology.In this paper,evolutionary network and influence maximization are discussed.It also discusses the diffusion model of social influence analysis and the influence analysis method based on social network big data.At the same time,some widely used influence algorithms are further sorted out.In addition,this paper also discusses the relationship between big data,evolutionary networks,and social influence maximization.This paper aims to help other researchers to better understand the existing work and provide new ideas for the influence analysis of social networks through the influence analysis of large-scale social networks.

Key words: Big data, Evolutionary network, Machine learning, Social influence

CLC Number: 

  • TP393
[1]KEMPE D,KLEINBERG J,TARDOS É.Maximizing the spread of influence through a social network[C]//Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2003:137-146.
[2]NEWMAN M E J.The structure of scientific collaboration networks[J].Proceedings of the National Academy of Sciences,2001,98(2):404-409.
[3]GAO N,WANG B,LU K,et al.Teaching-learning-based optimi-zation of an ultra-broadband parallel sound absorber[J/OL].Applied Acoustics,2021,178:107969.
[4]BANERJEE A V.A simple model of herd behavior[J].TheQuarterly Journal of Economics,1992,107(3):797-817.
[5]DAS K,PACHORI R B.Schizophrenia detection technique using multivariate iterative filtering and multichannel EEG signals[J/OL].Biomedical Signal Processing and Control,2021,67:102525.
[6]LESKOVEC J,KRAUSE A,GUESTRIN C,et al.Cost-effective outbreak detection in networks[C]//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Disco-very and Data Mining.2007:420-429.
[7]NGUYEN H T,THAI M T,DINH T N.Stop-and-stare:Optimal sampling algorithms for viral marketing in billion-scale networks[C]//Proceedings of the 2016 International Conference on Management of Data.2016:695-710.
[8]DAGUM P,KARP R,LUBY M,et al.An optimal algorithm for Monte Carlo estimation[J].SIAM Journal on Computing,2000,29(5):1484-1496.
[9]LV J,YANG B,YANG Z,et al.A community-based algorithm for influence blocking maximization in social networks[J].Cluster Computing,2019,22(3):5587-5602.
[10]WANG X G.A new algorithm for the influence maximization problem in dynamic networks or traffic sensor networks[J].Multimedia Tools and Applications,2016,75(8):4833-4844.
[11]LI W M,LI Z,LUVEMBE A M,et al.Influence maximization algorithm based on Gaussian propagation model[J/OL].Information Sciences,2021,568:386-402.
[12]TANG J,ZHANG R,WANG P,et al.A discrete shuffled frog-leaping algorithmto identify influential nodes for influence maximization in social networks[J/OL].Knowledge-Based Systems,2020,187:104833.
[13]WU Y Z.Research on sequential regression technology based on evolutionary algorithm[D].Heifei:University of Science and Technology of China,2016.
[14]WANG X,ZHANG Y,ZHANG W,et al.Efficient distance-aware influence maximization in geo-social networks[J].IEEE Transactions on Knowledge and Data Engineering,2016,29(3):599-612.
[15]LIU B,CONG G,XU D,et al.Time constrained influence maximization in social networks[C]//2012 IEEE 12th International Conference on Data Mining.IEEE,2012:439-448.
[16]MOHAMMADI A,SARAEE M,MIRZAEI A.Time-sensitiveinfluence maximization in social networks[J].Journal of Information Science,2015,41(6):765-778.
[17]BARBIERI N,BONCHI F,MANCO G.Topic-aware social influence propagation models[J].Knowledge and Information Systems,2013,37(3):555-584.
[18]HE Q,FANG H,ZHANG J,et al.Dynamic Opinion Maximization in Social Networks[J/OL].IEEE Transactions on Know-ledge and Data Engineering,2021.
[19]SHU R,CHENG P,CHEN G,et al.Direct Universal Access:Making Data Center Resources Available to {FPGA}[C]//16th {USENIX} Symposium on Networked Systems Design and Implementation({NSDI} 19).2019:127-140.
[20]HUNTER II T.Advanced microservices:a hands-on approach to microservice infrastructure and tooling[M].Apress,2017.
[21]HE Q,WANG X,ZHAO Y,et al.Reinforcement LearningBased Competitive Opinion Maximization Approach in Signed Social Networks[J/OL].IEEE Transactions on Computational Social Systems,2021.
[22]HUDSON N,KHAMFROUSH H.Behavioral Information Diffusion for Opinion Maximization in Online Social Networks[J].IEEE Transactions on Network Science and Engineering,2020,8(2):1259-1268.
[23]MA H,LYU M R,KING I.Learning to recommend with trust and distrust relationships[C]//Proceedings of the Third ACM Conference on Recommender Systems.2009:189-196.
[24]MORRIS M,KRETZSCHMAR M.Concurrent partnerships and transmission dynamics in networks[J].Social networks,1995,17(3/4):299-318.
[25]PAGE L,BRIN S,MOTWANI R,et al.The PageRank citation ranking:Bringing order to the web[R].Stanford InfoLab,1999.
[26]HE Q,SUN L,WANG X,et al.Positive opinion maximization insigned social networks[J/OL].Information Sciences,2021,558:34-49.
[27]HE Q,WANG X,HUANG M,et al.Multi-stage opinion maximization in social networks[J].Neural Computing and Applications,2021,33(19):12367-12380.
[28]LI H,PAN L,WU P.Dominated competitive influence maximization with time-critical and time-delayed diffusion in social networks[J/OL].Journal of computational science,2018,28:318-327.
[29]GOMEZ-RODRIGUEZ M,SCHÖLKOPF B.Influence Maximization in Continuous Time Diffusion Networks[J].arXiv:1205.1682,2012.
[30]LI J,SELLIS T,CULPEPPER J S,et al.Geo-social influence spanning maximization[J].IEEE Transactions on Knowledge and Data Engineering,2017,29(8):1653-1666.
[31]NEMHAUSER G L,WOLSEY L A,FISHER M L.An analysis of approximations for maximizing submodular set functions—I[J].Mathematical Programming,1978,14(1):265-294.
[32]ALI K,WANG C Y,CHEN Y S.A novel nested q-learningmethod to tackle time-constrained competitive influence maximization[J/OL].IEEE Access,2018,7:6337-6352.
[33]QIU L Q,YU J F,FAN X,et al.Analysis of influence maximization in temporal social networks[J/OL].IEEE Access,2019,7:42052-42062.
[34]CHEN W,LIN T,YANG C.Real-time topic-aware influencemaximization using preprocessing[J].Computational social networks,2016,3(1):1-19.
[35]ZHANG Z K,LIU C,ZHAN X X,et al.Dynamics of information diffusion and its applications on complex networks[J/OL].Physics Reports,2016,651:1-34.
[36]LIN Y,LUI J C S.Analyzing competitive influence maximization problems with partial information:An approximation algorithmic framework[J/OL].Performance Evaluation,2015,91:187-204.
[37]ZHANG Y,BURER S,NICK STREET W,et al.EnsemblePruning Via Semi-definite Programming[J].Journal of Machine Learning Research,2006,7(7):1315-1338.
[38]RICHARDSON M,DOMINGOS P.Mining knowledge-sharing sites for viral marketing[C]//Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2002:61-70.
[39]MYERS S A,LESKOVEC J.On the convexity of latent social network inference[J].arXiv:1010.5504,2010.
[40]WANG L,ERMON S,HOPCROFT J E.Feature-enhancedprobabilistic models for diffusion network inference[C]//Joint European Conference on Machine Learning and Knowledge Discovery in Databases.Berlin:Springer,2012:499-514.
[41]JACCARD P.The distribution of the flora in the alpine zone.1[J].New Phytologist,1912,11(2):37-50.
[42]GOEMANS M X,WILLIAMSON D P.Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming[J].Journal of the ACM(JACM),1995,42(6):1115-1145.
[43]DU N,SONG L,YUAN M,et al.Learning networks of heterogeneous influence[J/OL].Advances in Neural Information Processing Systems,2012,25:2780-2788.
[44]DU N,LIANG Y,BALCAN M,et al.Influence function learning in information diffusion networks[C]//International Conference on Machine Learning.PMLR,2014:2016-2024.
[45]GOMEZ-RODRIGUEZ M,LESKOVEC J,KRAUSE A.Inferring networks of diffusion and influence[J].ACM Transactions on Knowledge Discovery from Data(TKDD),2012,5(4):1-37.
[46]NETRAPALLI P,SANGHAVI S.Learning the graph of epidemic cascades[J].ACM SIGMETRICS Performance Evaluation Review,2012,40(1):211-222.
[47]D’ASPREMONT A,EL GHAOUI L,JORDAN M I,et al.A direct formulation for sparse PCA using semidefinite programming[J].SIAM Review,2007,49(3):434-448.
[48]LANCKRIET G R G,CRISTIANINI N,BARTLETT P,et al.Learning the kernel matrix with semidefinite programming[J].Journal of Machine Learning Research,2004,5(Jan):27-72.
[49]FUJISAWA K,FUKUDA M,KOJIMA M,et al.SDPA-C(semidefinite Programming Algorithm-Completion Method).User’s Manual-Version 6-10[M].Inst.of Technology,2004.
[50]LAGRÉE P,CAPPÉ O,CAUTIS B,et al.Algorithms for online in-fluencer marketing[J].ACM Transactions on Knowledge Discovery from Data(TKDD),2018,13(1):1-30.
[51]COHEN E,DELLING D,PAJOR T,et al.Sketch-based influen-ce maximization and computation:Scaling up with guarantees[C]//Proceedings of the 23rd ACM International Conferenceon Information and Knowledge Management.2014:629-638.
[52]GOYAL A,LU W,LAKSHMANAN L V S.Celf++ optimizing the greedy algorithm for influence maximization in social networks[C]//Proceedings of the 20th International Conference Companion on World Wide Web.2011:47-48.
[53]COHEN E,DELLING D,PAJOR T,et al.Sketch-based in-fluence maximization and computation:Scaling up with guarantees[C]//Proceedings of the 23rd ACM International Confe-rence on Information and Knowledge Management.2014:629-638.
[54]BAO Z K,LIU J G,ZHANG H F.Identifying multiple influential spreaders by a heuristic clustering algorithm[J].Physics Letters A,2017,381(11):976-983.
[55]WANG X,SU Y,ZHAO C,et al.Effective identification of multiple influential spreaders by Degree Punishment[J/OL].Physica A:Statistical Mechanics and its Applications,2016,461:238-247.
[56]CHEN W,WANG Y,YANG S.Efficient influence maximizationin social networks[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2009:199-208.
[57]FREEMAN L C.Centrality in social networks conceptual clarifi-cation[J].Social Networks,1978,1(3):215-239.
[58]BUCUR D,IACCA G.Influence maximization in social networkswith genetic algorithms[C]//European Conference on the Applications of Evolutionary Computation.Cham:Springer,2016:379-392.
[59]JIANG Q,SONG G,GAO C,et al.Simulated annealing based influence maximization in social networks[C]//Twenty-fifth AAAI Conference on Artificial Intelligence.2011.
[60]TSAI C W,YANG Y C,CHIANG M C.A genetic newgreedy algorithm for influence maximization in social network[C]//2015 IEEE International Conference on Systems,Man,and Cybernetics.IEEE,2015:2549-2554.
[61]GONG M,YAN J,SHEN B,et al.Influence maximization in social networks based on discrete particle swarm optimization[J/OL].Information Sciences,2016,367:600-614.
[62]ERDOS P,RÉNYI A.On the evolution of random graphs[J].Publ.Math.Inst.Hung.Acad.Sci,1960,5(1):17-60.
[63]GOLDENBERG J,LIBAI B,MULLER E.Using complex systems analysis to advance marketing theory development:Mode-ling heterogeneity effects on new productgrowth through stochastic cellular automata[J].Academy of Marketing Science Review,2001,9(3):1-18.
[64]GOMEZ-RODRIGUEZ M,LESKOVEC J,KRAUSE A.Inferring networks of diffusion and influence[J].ACM Transactions on Knowledge Discovery from Data(TKDD),2012,5(4):1-37.
[65]DANESHMAND H,GOMEZ-RODRIGUEZ M,SONG L,et al.Estimating diffusion network structures:Recovery conditions,sample complexity & soft-thresholding algorithm[C]//International Conference on Machine Learning.PMLR,2014:793-801.
[66]LESKOVEC J,BACKSTROM L,KLEINBERG J.Meme-tra-cking and the dynamics of the news cycle[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2009:497-506.
[67]NAKATA K,FUJISAWA K,FUKUDA M,et al.Exploitingsparsity insemidefinite programming via matrix completion II:Implementation and numerical results[J].Mathematical Programming,2003,95(2):303-327.
[68]DU N,SONG L,GOMEZ-RODRIGUEZ M,et al.Scalable influen-ce estimation in continuous-time diffusion networks[J/OL].Advances in Neural Information Processing Systems,2013,26:3147.
[69]BISWAS T K,ABBASI A,CHAKRABORTTY R K.An MCDM integrated adaptive simulated annealing approach for influence maximization in social networks[J/OL].Information Sciences,2021,556:27-48.
[70]WANG C,CHEN W,WANG Y.Scalable influence maximization for independent cascade model in large-scale social networks[J].Data Mining and Knowledge Discovery,2012,25(3):545-576.
[71]SAITO K,KIMURA M,OHARA K,et al.Learning continuous-time information diffusion model for social behavioral data ana-lysis[C]//Asian Conference on Machine Learning.Berlin:Springer,2009:322-337.
[72]YANG G,CAO Y,TAO H.A method for multi-objective optimization and application in automobile impact[J/OL].Journal of Physics:Conference Series.2021,1802(3):032129.
[1] LENG Dian-dian, DU Peng, CHEN Jian-ting, XIANG Yang. Automated Container Terminal Oriented Travel Time Estimation of AGV [J]. Computer Science, 2022, 49(9): 208-214.
[2] NING Han-yang, MA Miao, YANG Bo, LIU Shi-chang. Research Progress and Analysis on Intelligent Cryptology [J]. Computer Science, 2022, 49(9): 288-296.
[3] CHEN Jing, WU Ling-ling. Mixed Attribute Feature Detection Method of Internet of Vehicles Big Datain Multi-source Heterogeneous Environment [J]. Computer Science, 2022, 49(8): 108-112.
[4] LI Yao, LI Tao, LI Qi-fan, LIANG Jia-rui, Ibegbu Nnamdi JULIAN, CHEN Jun-jie, GUO Hao. Construction and Multi-feature Fusion Classification Research Based on Multi-scale Sparse Brain Functional Hyper-network [J]. Computer Science, 2022, 49(8): 257-266.
[5] ZHANG Guang-hua, GAO Tian-jiao, CHEN Zhen-guo, YU Nai-wen. Study on Malware Classification Based on N-Gram Static Analysis Technology [J]. Computer Science, 2022, 49(8): 336-343.
[6] CHEN Ming-xin, ZHANG Jun-bo, LI Tian-rui. Survey on Attacks and Defenses in Federated Learning [J]. Computer Science, 2022, 49(7): 310-323.
[7] XIAO Zhi-hong, HAN Ye-tong, ZOU Yong-pan. Study on Activity Recognition Based on Multi-source Data and Logical Reasoning [J]. Computer Science, 2022, 49(6A): 397-406.
[8] YAO Ye, ZHU Yi-an, QIAN Liang, JIA Yao, ZHANG Li-xiang, LIU Rui-liang. Android Malware Detection Method Based on Heterogeneous Model Fusion [J]. Computer Science, 2022, 49(6A): 508-515.
[9] LI Ya-ru, ZHANG Yu-lai, WANG Jia-chen. Survey on Bayesian Optimization Methods for Hyper-parameter Tuning [J]. Computer Science, 2022, 49(6A): 86-92.
[10] ZHAO Lu, YUAN Li-ming, HAO Kun. Review of Multi-instance Learning Algorithms [J]. Computer Science, 2022, 49(6A): 93-99.
[11] WANG Fei, HUANG Tao, YANG Ye. Study on Machine Learning Algorithms for Life Prediction of IGBT Devices Based on Stacking Multi-model Fusion [J]. Computer Science, 2022, 49(6A): 784-789.
[12] XU Jie, ZHU Yu-kun, XING Chun-xiao. Application of Machine Learning in Financial Asset Pricing:A Review [J]. Computer Science, 2022, 49(6): 276-286.
[13] SUN Xuan, WANG Huan-xiao. Capability Building for Government Big Data Safety Protection:Discussions from Technologicaland Management Perspectives [J]. Computer Science, 2022, 49(4): 67-73.
[14] YAO Xiao-ming, DING Shi-chang, ZHAO Tao, HUANG Hong, LUO Jar-der, FU Xiao-ming. Big Data-driven Based Socioeconomic Status Analysis:A Survey [J]. Computer Science, 2022, 49(4): 80-87.
[15] LI Ye, CHEN Song-can. Physics-informed Neural Networks:Recent Advances and Prospects [J]. Computer Science, 2022, 49(4): 254-262.
Full text



No Suggested Reading articles found!