Computer Science ›› 2022, Vol. 49 ›› Issue (8): 336-343.doi: 10.11896/jsjkx.210900203
• Information Security • Previous Articles Next Articles
ZHANG Guang-hua1,2, GAO Tian-jiao1, CHEN Zhen-guo3, YU Nai-wen1
CLC Number:
[1]GUAN C,SUN K,LEI L,et al.Danger Neighbor attack:Information leakage via post Message mechanism in HTML5 [J].Computers & Security,2019(80):291-305. [2]YE Y,LI T,ADJEROH D,et al.A survey on malware detection using data mining techniques [J].ACM Computing Surveys (CSUR),2017,50(3):1-40. [3]Malware bytes Labs.2020 State of Malware Report [R].Ireland:Malwarebytes,2020. [4]Malware bytes Labs.2021 State of Malware Report [R].Ireland:Malwarebytes,2020. [5]SINGH J,SINGH J.A survey on machine learning-based malware detection in executable files [J].Journal of Systems Architecture,2021(112):101861. [6]Microsoft.Microsoft Malware Classification Challenge(BIG2015)[EB/OL].https://www.kaggle.com/c/malware-classification/overview. [7]CAYIR A,UNAL U,DAG H.Random CapsNet forest model for imbalanced malware type classification task [J].Computers &Security,2021(102):102133. [8]XIAO G,LI J,CHEN Y,et al.MalFCS:An effective malware classification framework with automated feature extraction based on deep convolutional neural networks [J].Journal of Parallel and Distributed Computing,2020(141):49-58. [9]NARAYANAN B N,DJANEYE-BOUNDJOU O,KEBEDE T.Performance analysis of machine learning and pattern recognition algorithms for Malware classification [C]//2016 IEEE National Aerospace and Electronics Conference(NAECON) and Ohio Innovation Summit(OIS).2016:338-342. [10]ZHANG W,MEMBER S,WANG H,et al.DAMBA:Detecting android malware by ORGB analysis [J].IEEE Transacyions Reliability,2020,69(1):55-69. [11]YOUSEFI-AZAR M,VARADHARAJAN V,HAMEY L.Au-toencoder-based feature learning for cyber security applications [C]//2017 International Joint Conference on Neural Networks(IJCNN).2017:3854-3861. [12]KIM J,BU S,CHO S.Zero-day malware detection using transferred generative adversarial networks based on deep autoenco-ders[J].Information Sciences,2018(460/461):83-102. [13]CHENG C,LI C,HAN Y,et al.A semi-supervised deep learning image caption model based on Pseudo Label and N-gram [J].International Journal of Approximate Reasoning,2021(131):93-107. [14]RAFF E,ZAK R,COX R,et al.An investigation of byte n-gram features for malware classification [J].Journal Computer Viro-logy and Hacking Techniques,2018(14):1-20. [15]EI BOUJNOUNI H,RAHOUTI M,EI BOUJNOUNI M.Identification of SARS-CoV-2 origin:using Ngrams,principal component analysis and random Forest algorithm [J].Informatics in Medicine Unlocked,2021(24):100577. [16]HAN X,JIN F,WANG R,et al.Classification of malware for self-driving systems [J].Neurocomputing,2021(428):352-360. [17]YOO S,KIM S,KIM S,et al.AI-HydRa:Advanced hybrid approach using random forest and deep learning for malware classification [J].Information Sciences,2021(546):420-435. [18]HUDA S,MIAH S,HASSAN M,et al.Defending unknown attacks on cyber-physical systems by semi-supervised approach and available unlabeled data [J].Information Sciences,2017(379):211-228. [19]CUI Z,DU L,WANG P,et al.Malicious code detection based on CNNs and multi-objective algorithm [J].Journal of Parallel and Distributed Computing,2019(129):50-58. [20]Lracker.Worm.WhBoy.cw-Killer[EB/OL].(2020-01-09)[2021-09-28].https://github.com/lracker/Worm.WhBoy.cw-Killer. [21]SURENDRAN R,THOMAS T,EMMANUEL S.A TAN based hybrid model for android malware detection [J].Journal of Information Security and Applications,2020(54):102483. [22]Baidubaike.WannaCry[EB/OL].[2021-09-28].https://baike.baidu.com/item/WannaCry/20797421. [23]SIKORSKI M,HONIG A.Practical malware analysis:Thehands-on guide to dissecting malicious software [M].San Francisco:No Starch Press,2014. [24]GAO X,HU C,SHAN C,et al.Malware classification for the cloud via semi-supervised transfer learning [J].Journal of Information Security and Applications,2020(55):102661. [25]DAMODARAN A,TROIA F,DI TROIA F,et al.A comparison of static,dynamic,and hybrid analysis for malware detection [J].Journal of Computer Virology and Hacking Techniques,2017,13(1):1-12. [26]RONEN R,RADU M,FEUERSTEIN C,et al.Microsoft mal-ware classification challenge[J].arXiv:1802.10135,2018. [27]GIBERT D,MATEU C,PLANES J,et al.Auditing static machine learning anti-Malware tools against metamorphic attacks [J].Computers & Security,2021(102):102159. |
[1] | LENG Dian-dian, DU Peng, CHEN Jian-ting, XIANG Yang. Automated Container Terminal Oriented Travel Time Estimation of AGV [J]. Computer Science, 2022, 49(9): 208-214. |
[2] | NING Han-yang, MA Miao, YANG Bo, LIU Shi-chang. Research Progress and Analysis on Intelligent Cryptology [J]. Computer Science, 2022, 49(9): 288-296. |
[3] | LI Yao, LI Tao, LI Qi-fan, LIANG Jia-rui, Ibegbu Nnamdi JULIAN, CHEN Jun-jie, GUO Hao. Construction and Multi-feature Fusion Classification Research Based on Multi-scale Sparse Brain Functional Hyper-network [J]. Computer Science, 2022, 49(8): 257-266. |
[4] | HE Qiang, YIN Zhen-yu, HUANG Min, WANG Xing-wei, WANG Yuan-tian, CUI Shuo, ZHAO Yong. Survey of Influence Analysis of Evolutionary Network Based on Big Data [J]. Computer Science, 2022, 49(8): 1-11. |
[5] | CHEN Ming-xin, ZHANG Jun-bo, LI Tian-rui. Survey on Attacks and Defenses in Federated Learning [J]. Computer Science, 2022, 49(7): 310-323. |
[6] | LI Ya-ru, ZHANG Yu-lai, WANG Jia-chen. Survey on Bayesian Optimization Methods for Hyper-parameter Tuning [J]. Computer Science, 2022, 49(6A): 86-92. |
[7] | ZHAO Lu, YUAN Li-ming, HAO Kun. Review of Multi-instance Learning Algorithms [J]. Computer Science, 2022, 49(6A): 93-99. |
[8] | WANG Fei, HUANG Tao, YANG Ye. Study on Machine Learning Algorithms for Life Prediction of IGBT Devices Based on Stacking Multi-model Fusion [J]. Computer Science, 2022, 49(6A): 784-789. |
[9] | XIAO Zhi-hong, HAN Ye-tong, ZOU Yong-pan. Study on Activity Recognition Based on Multi-source Data and Logical Reasoning [J]. Computer Science, 2022, 49(6A): 397-406. |
[10] | YAO Ye, ZHU Yi-an, QIAN Liang, JIA Yao, ZHANG Li-xiang, LIU Rui-liang. Android Malware Detection Method Based on Heterogeneous Model Fusion [J]. Computer Science, 2022, 49(6A): 508-515. |
[11] | ZHAO Jing-wen, FU Yan, WU Yan-xia, CHEN Jun-wen, FENG Yun, DONG Ji-bin, LIU Jia-qi. Survey on Multithreaded Data Race Detection Techniques [J]. Computer Science, 2022, 49(6): 89-98. |
[12] | XU Jie, ZHU Yu-kun, XING Chun-xiao. Application of Machine Learning in Financial Asset Pricing:A Review [J]. Computer Science, 2022, 49(6): 276-286. |
[13] | YAO Xiao-ming, DING Shi-chang, ZHAO Tao, HUANG Hong, LUO Jar-der, FU Xiao-ming. Big Data-driven Based Socioeconomic Status Analysis:A Survey [J]. Computer Science, 2022, 49(4): 80-87. |
[14] | LI Ye, CHEN Song-can. Physics-informed Neural Networks:Recent Advances and Prospects [J]. Computer Science, 2022, 49(4): 254-262. |
[15] | ZHANG Ying-li, MA Jia-li, LIU Zi-ang, LIU Xin, ZHOU Rui. Overview of Vulnerability Detection Methods for Ethereum Solidity Smart Contracts [J]. Computer Science, 2022, 49(3): 52-61. |
|