Computer Science ›› 2022, Vol. 49 ›› Issue (9): 208-214.doi: 10.11896/jsjkx.210700028
• Artificial Intelligence • Previous Articles Next Articles
LENG Dian-dian, DU Peng, CHEN Jian-ting, XIANG Yang
CLC Number:
[1]HUO K G,ZHANG Y Q,HU Z H.Research on scheduling problem of multiload AGV at automated container terminal[J].Journal of Dalian University of Technology,2016,56(3):244-251. [2]WANG H C,ZHANG Z W,ZHAO Y,et al.A dynamic time prediction method of AGV for vertical transportation:CN CN202110027744.2[P].2021-04-30. [3]ZHONG M,YANG Y,DESSOUKY Y,et al.Multi-AGV sche-duling for conflict-free path planning in automated container terminals[J].Computers & Industrial Engineering,2020,142(Apr.):106371.1-106371.11. [4]YUE X,XU X,WANG X.Research on MutiAGV SechdulingAlgorithm Based on Improved Hybrid PSOGA for FMS[J].Computer Science,2018,45(S2):167-171. [5]GUO K,ZHU J,SHEN L.An Improved Acceleration Method Based on Multi-Agent System for AGVs Conflict-Free Path Planning in Automated Terminals[J].IEEE Access,2020,9:3326-3338. [6]ZHANG Z,WU L,ZHANG W,et al.Energy-efficient path planning for a single-load automated guided vehicle in a manufactu-ring workshop[J].Computers & Industrial Engineering,2021,158:107397. [7]WANG H,TANG X,KUO Y H,et al.A simple baseline for travel time estimation using large-scale trip data[J].ACM Transactions on Intelligent Systems and Technology(TIST),2019,10(2):1-22. [8]YUAN H,LI G,BAO Z,et al.Effective travel time estimation:When historical trajectories over road networks matter[C]//Proceedings of the 2020 ACM SIGMOD International Confe-rence on Management of Data.2020:2135-2149. [9]ZOU Z,YANG H,ZHU A X.Estimation of travel time based on ensemble method with multi-modality perspective urban big data[J].IEEE Access,2020,8:24819-24828. [10]DE FABRITIIS C,RAGONA R,VALENTI G.Traffic estimation and prediction based on real time floating car data[C]//2008 11th International IEEE Conference on Intelligent Transportation Systems.IEEE,2008:197-203. [11]HOFLEITNER A,HERRING R,ABBEEL P,et al.Learningthe dynamics of arterial traffic from probe data using a dynamic Bayesian network[J].IEEE Transactions on Intelligent Transportation Systems,2012,13(4):1679-1693. [12]HUNTER T,HERRING R,ABBEEL P,et al.Path and travel time inference from GPS probe vehicle data[J].NIPS Analyzing Networks and Learning with Graphs,2009,12(1):2. [13]WANG Z,FU K,YE J.Learning to estimate the travel time[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2018:858-866. [14]XU J,ZHANG Y,CHAO L,et al.STDR:a deep learning me-thod for travel time estimation[C]//International Conference on Database Systems for Advanced Applications.Cham:Springer,2019:156-172. [15]LIU W,HE J,WANG H,et al.A Novel Road Segment Representation Method for Travel Time Estimation[C]//DASFAA(Workshops).2021:398-413. [16]FU T,LEE W C.Deepist:Deep image-based spatio-temporalnetwork for travel time estimation[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management.2019:69-78. [17]WANG D,ZHANG J,CAO W,et al.When will you arrive? estimating travel time based on deep neural networks[C]//Procee-dings of the AAAI Conference on Artificial Intelligence.2018. [18]CHEN T,GUESTRIN C.Xgboost:A scalable tree boosting system[C]//Proceedings of the 22ndACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2016:785-794. |
[1] | NING Han-yang, MA Miao, YANG Bo, LIU Shi-chang. Research Progress and Analysis on Intelligent Cryptology [J]. Computer Science, 2022, 49(9): 288-296. |
[2] | HE Qiang, YIN Zhen-yu, HUANG Min, WANG Xing-wei, WANG Yuan-tian, CUI Shuo, ZHAO Yong. Survey of Influence Analysis of Evolutionary Network Based on Big Data [J]. Computer Science, 2022, 49(8): 1-11. |
[3] | LI Yao, LI Tao, LI Qi-fan, LIANG Jia-rui, Ibegbu Nnamdi JULIAN, CHEN Jun-jie, GUO Hao. Construction and Multi-feature Fusion Classification Research Based on Multi-scale Sparse Brain Functional Hyper-network [J]. Computer Science, 2022, 49(8): 257-266. |
[4] | ZHANG Guang-hua, GAO Tian-jiao, CHEN Zhen-guo, YU Nai-wen. Study on Malware Classification Based on N-Gram Static Analysis Technology [J]. Computer Science, 2022, 49(8): 336-343. |
[5] | CHEN Ming-xin, ZHANG Jun-bo, LI Tian-rui. Survey on Attacks and Defenses in Federated Learning [J]. Computer Science, 2022, 49(7): 310-323. |
[6] | LI Ya-ru, ZHANG Yu-lai, WANG Jia-chen. Survey on Bayesian Optimization Methods for Hyper-parameter Tuning [J]. Computer Science, 2022, 49(6A): 86-92. |
[7] | ZHAO Lu, YUAN Li-ming, HAO Kun. Review of Multi-instance Learning Algorithms [J]. Computer Science, 2022, 49(6A): 93-99. |
[8] | WANG Fei, HUANG Tao, YANG Ye. Study on Machine Learning Algorithms for Life Prediction of IGBT Devices Based on Stacking Multi-model Fusion [J]. Computer Science, 2022, 49(6A): 784-789. |
[9] | XIAO Zhi-hong, HAN Ye-tong, ZOU Yong-pan. Study on Activity Recognition Based on Multi-source Data and Logical Reasoning [J]. Computer Science, 2022, 49(6A): 397-406. |
[10] | YAO Ye, ZHU Yi-an, QIAN Liang, JIA Yao, ZHANG Li-xiang, LIU Rui-liang. Android Malware Detection Method Based on Heterogeneous Model Fusion [J]. Computer Science, 2022, 49(6A): 508-515. |
[11] | XU Jie, ZHU Yu-kun, XING Chun-xiao. Application of Machine Learning in Financial Asset Pricing:A Review [J]. Computer Science, 2022, 49(6): 276-286. |
[12] | YAO Xiao-ming, DING Shi-chang, ZHAO Tao, HUANG Hong, LUO Jar-der, FU Xiao-ming. Big Data-driven Based Socioeconomic Status Analysis:A Survey [J]. Computer Science, 2022, 49(4): 80-87. |
[13] | LI Ye, CHEN Song-can. Physics-informed Neural Networks:Recent Advances and Prospects [J]. Computer Science, 2022, 49(4): 254-262. |
[14] | ZHANG Xiao-qing, FANG Jian-sheng, XIAO Zun-jie, CHEN Bang, Risa HIGASHITA, CHEN Wan, YUAN Jin, LIU Jiang. Classification Algorithm of Nuclear Cataract Based on Anterior Segment Coherence Tomography Image [J]. Computer Science, 2022, 49(3): 204-210. |
[15] | ZHANG Ying-li, MA Jia-li, LIU Zi-ang, LIU Xin, ZHOU Rui. Overview of Vulnerability Detection Methods for Ethereum Solidity Smart Contracts [J]. Computer Science, 2022, 49(3): 52-61. |
|