Computer Science ›› 2022, Vol. 49 ›› Issue (6): 276-286.doi: 10.11896/jsjkx.210900127
• Artificial Intelligence • Previous Articles Next Articles
XU Jie1, ZHU Yu-kun1, XING Chun-xiao2
CLC Number:
[1] LO A W,MACKINLAY A C.Stock market prices do not follow random walks:Evidence from a simple specification test[J].The Review of Financial Studies,1988,1(1):41-66. [2] SHAH D,ISAH H,ZULKERNINE F.Stock market analysis:A review and taxonomy of prediction techniques[J/OL].International Journal of Financial Studies,2019,7(2):26.https://www.mdpi.com/2227-7072/7/2/26. [3] HARVEY C R,LIU Y.A census of the factor zoo[J/OL].SSRN,2019,3341728.https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3341728. [4] RUNDO F,TRENTA F,DI STALLO A L,et al.Machine lear-ning for quantitative finance applications:A survey[J/OL].Applied Sciences,2019,9(24):5574.https://www.mdpi.com/2076-3417/9/24/5574. [5] JURCZENKO,EMMANUEL E D.Machine Learning for Asset Management:New Developments and Financial Applications[M].John Wiley & Sons,2020. [6] CHONG E,HAN C,PARK F C.Deep learning networks for stock market analysis and prediction:Methodology,data representations,and case studies[J].Expert Systems with Applications,2017,83:187-205. [7] NTI I K,ADEKOYA A F,WEYORI B A.A systematic review of fundamental and technical analysis of stock market predictions[J/OL].Artificial Intelligence Review,2019:1-51.https://linkspringer.53yu.com/article/10.1007/s10462-019-09754-z. [8] JIANG W.Applications of deep learning in stock market prediction:recent progress[J].arXiv:2003.01859,2020. [9] DIXON M F,HALPERIN I.The four horsemen of machinelearning in finance[J/OL].SSRN,2019,3453564.https://papers.ssrn.com/sol3/papers.cfm?. [10] ZHENG A,CASARI A.Feature engineering for machine lear-ning:principles and techniques for data scientists[M/OL].O’Reilly Media,Inc.,2018. [11] LETTAU M,PELGER M.Factors that fit the time series and cross-section of stock returns[J].The Review of Financial Stu-dies,2020,33(5):2274-2325. [12] KELLY B T,PRUITT S,SU Y.Characteristics are covariances:A unified model of risk and return[J].Journal of Financial Economics,2019,134(3):501-524. [13] LETTAU M,PELGER M.Estimating latent asset-pricing factors[J].Journal of Econometrics,2020,218(1):1-31. [14] ONATSKI A.Asymptotics of the principal components estimator of large factor models with weakly influential factors[J].Journal of Econometrics,2012,168(2):244-258. [15] AIT-SAHALIA Y,XIU D.Using principal component analysis to estimate a high dimensional factor model with high-frequency data[J].Journal of Econometrics,2017,201(2):384-399. [16] AVELLANEDA M,HEALY B,PAPANICOLAOU A,et al.PCA for Implied Volatility Surfaces[J].The Journal of Financial Data Science,2020,2(2):85-109. [17] CARAIANI P.The predictive power of singular value decomposition entropy for stock market dynamics[J].Physica A:Statistical Mechanics and its Applications,2014,393:571-578. [18] GU R,SHAO Y.How long the singular value decomposed entropy predicts the stock market?-Evidence from the Dow Jones Industrial Average Index[J].Physica A:Statistical Mechanics and Its Applications,2016,453:150-161. [19] WANG D.Adjustable robust singular value decomposition:Design,analysis and application to finance[J].Data,2017,2(3):29. [20] BACK A D,WEIGEND A S.A first application of independent component analysis to extracting structure from stock returns[J].International Journal of Neural Systems,1997,8(4):473-484. [21] BARILLAS F,SHANKEN J.Comparing asset pricing models[J].The Journal of Finance,2018,73(2):715-754. [22] FULOP A,YU J.Bayesian analysis of bubbles in asset prices[J/OL].Econometrics,2017,5(4):47.https://www.mdpi.com/2225-1146/5/4/47. [23] TURNER J A.Momentum Portfolios and the Capital Asset Pricing Model:A Bayesian Approach[J/OL].Quarterly Journal of Finance and Accounting,2010:43-59.https://www.jstor.org/stable/23074629. [24] SCHORFHEIDE F,SONG D,YARON A.Identifying long-run risks:A Bayesian mixed frequency approach[J].Econometrica,2018,86(2):617-654. [25] BUSSE J A,IRVINE P J.Bayesian alphas and mutual fund persistence[J].The Journal of Finance,2006,61(5):2251-2288. [26] GEWEKE J,AMISANO G.Hierarchical Markov normal mix-ture models with applications to financial asset returns[J].Journal of Applied Econometrics,2011,26(1):1-29. [27] PSARADAKIS Z,SOLA M,SPAGNOLO F.On Markov error correction models,with an application to stock prices and dividends[J].Journal of Applied Econometrics,2004,19(1):69-88. [28] GU S,KELLY B,XIU D.Autoencoder asset pricing models[J/OL].Journal of Econometrics,2020.https://sciencedirect.53yu.com/science/article/pii/S0304407620301998. [29] SUIMON Y,SAKAJI H,IZUMI K,et al.Autoencoder-BasedThree-Factor Model for the Yield Curve of Japanese Government Bonds and a Trading Strategy[J].Journal of Risk and Financial Management,2020,13(4):82. [30] LV S,HOU Y,ZHOU H.Financial Market Directional Forecasting With Stacked Denoising Autoencoder[J].arXiv:1912.00712,2019. [31] HUANG C F.A hybrid stock selection model using genetic algorithms and support vector regression[J].Applied Soft Computing,2012,12(2):807-818. [32] LEE M C.Using support vector machine with a hybrid feature selection method to the stock trend prediction[J].Expert Systems with Applications,2009,36(8):10896-10904. [33] KARATHANASOPOULOS A,THEOFILATOS K A,SERMPINIS G,et al.Stock market predictionusing evolutionary support vector machines:an application to the ASE20 index[J].The European Journal of Finance,2016,22(12):1145-1163. [34] ABEDIN M Z,GUOTAI C,MOULA F E,et al.Topological applications of multilayer perceptrons and support vector machines in financial decision support systems[J].International Journal of Finance & Economics,2019,24(1):474-507. [35] HUANG W,NAKAMORI Y,WANG S Y.Forecasting stockmarket movement direction with support vector machine[J].Computers & Operations Research,2005,32(10):2513-2522. [36] CHEN W H,SHIH J Y,WU S.Comparison of support-vector machines and back propagation neural networks in forecasting the six major Asian stock markets[J].International Journal of Electronic Finance,2006,1(1):49-67. [37] MORITZ B,ZIMMERMANN T.Tree-based conditional portfolio sorts:The relation between past and future stock returns[J/OL].SSRN,2016,2740751.https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2740751. [38] NTI K O,ADEKOYA A,WEYORI B.Random forest based feature selection of macroeconomic variables for stock market prediction[J/OL].American Journal of Applied Sciences,2019,16(7):200-212. [39] KRAUSS C,DO X A,HUCK N.Deep neural networks,gra-dient-boosted trees,random forests:Statistical arbitrage on the S&P 500[J].European Journal of Operational Research,2017,259(2):689-702. [40] THAKKAR A,CHAUDHARI K.A comprehensive survey onportfolio optimization,stock price and trend prediction using particle swarm optimization[J/OL].Archives of Computational Methods in Engineering,2020:1-32.https://linkspringer.53yu.com/. [41] RATHER A M,AGARWAL A,SASTRY V N.Recurrent neural network and a hybrid model for prediction of stock returns[J].Expert Systems with Applications,2015,42(6):3234-3241. [42] PARRACHO P,NEVES R,HORTA N.Trading in financialmarkets using pattern recognition optimized by genetic algorithms[C]//Proceedings of the 12th Annual Conference Companion on Genetic and Evolutionary Computation.2010:2105-2106. [43] MERELLO S,RATTO A P,ONETO L,et al.Ensemble Application of Transfer Learning and Sample Weighting for Stock Market Prediction[C]//2019 International Joint Conference on Neural Networks(IJCNN).2019:1-8. [44] NAM K H,SEONG N Y.Financial news-based stock movement prediction using causality analysis of influence in the Korean stock market[J].Decision Support Systems,2019,117:100-112. [45] NGUYEN T T,YOON S.A novel approach to short-term stock price movement prediction using transfer learning[J].Applied Sciences,2019,9(22):4745. [46] LI X,XIE H,LAU R Y K,et al.Stock prediction via sentimental transfer learning[J].IEEE Access,2018,6:73110-73118. [47] LEE T H,YANG Y.Bagging binary and quantile predictors for time series[J].Journal ofEconometrics,2006,135(1/2):465-497. [48] SUN J,LI H,FUJITA H,et al.Class-imbalanced dynamic financial distress prediction based on Adaboost-SVM ensemble combined with SMOTE and time weighting[J].Information Fusion,2020,54:128-144. [49] RUNDO F,TRENTA F,DI STALLO A L,et al.Machine lear-ning for quantitative finance applications:A survey[J].Applied Sciences,2019,9(24):5574. [50] GUDELEK M U,BOLUK S A,OZBAYOGLU A M.A deeplearning based stock trading model with 2-D CNN trend detection[C]//2017 IEEE Symposium Series on Computational Intelligence.2017:1-8. [51] HOSEINZADE E,HARATIZADEH S.CNNPred:CNN-based stock market prediction using several data sources[J].arXiv:1810.08923,2018. [52] KIM T,KIM H Y.Forecasting stock prices with a feature fusion LSTM-CNN model using different representations of the same data[J/OL].PloS one,2019,14(2):e0212320.https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0212320. [53] BOROVKOVA S,TSIAMAS I.An ensemble of LSTM neural networks for high-frequency stock market classification[J].Journal of Forecasting,2019,38(6):600-619. [54] YILDIZ Z C,YILDIZ S B.A portfolio construction frameworkusing LSTM-based stock markets forecasting[J/OL].International Journal of Finance & Economics,2020.https://online-library.wiley.com/doi/abs/10.1002/ijfe.2277. [55] CHEN S H,HSIEH Y L.Reinforcement learning in experimental asset markets[J].Eastern Economic Journal,2011,37(1):109-133. [56] CHOI J J,LAIBSON D,MADRIAN B C,et al.Reinforcementlearning and savings behavior[J].The Journal ofFinance,2009,64(6):2515-2534. [57] CAO J,CHEN J,HULL J,et al.Deep hedging of derivativesusing reinforcement learning[J].arXiv:2013.16409,2021. [58] CAO Y,ZHAI J.Estimating price impact via deep reinforcement learning[J/OL].International Journal of Finance &Economics,2020.https://onlinelibrary.wiley.com/doi/abs/10.1002/ijfe.2353. [59] LEE J,KIM R,KOH Y,et al.Global stock market predictionbased on stock chart images using deep Q-network[J].IEEE Access,2019,7:167260-167277. [60] DING X,ZHANG Y,LIU T,et al.Deep learning for event-dri-ven stock prediction[C]//Twenty-fourth International Joint Conference on Artificial Intelligence.2015. [61] XU Y,ZHAO J.Can sentiments on macroeconomic news explain stock returns? Evidence form social network data[J/OL].International Journal of Finance & Economics,2020.https://onlinelibrary.wiley.com/doi/abs/10.1002/ijfe.2260. [62] FANG L,PERESS J.Media coverage and the cross-section ofstock returns[J].The Journal of Finance,2009,64(5):2023-2052. [63] LIU J,LU Z,DU W.Combining enterprise knowledge graph and news sentiment analysis for stock price prediction[C]//Procee-dings of the 52nd Hawaii International Conference on System Sciences.2019. [64] CHEN Y,WEI Z,HUANG X.Incorporating corporation rela-tionship via graph convolutional neural networks for stock price prediction[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management.2018:1655-1658. [65] DENG S,ZHANG N,ZHANG W,et al.Knowledge-driven stock trend prediction and explanation via temporal convolutional network[C]//Companion Proceedings of The 2019 World Wide Web Conference.2019:678-685. [66] TIWARI S,PANDIT R,RICHHARIYA V.Predicting future trends in stock market by decision tree rough-set based hybrid system with HHMM[J/OL].Iternational Journal of Electronics and Computer Science Engineering,2010,1(3).http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.261.3105&rep=rep1&type=pdf. [67] CREIGHTON J,ZULKERNINE F H.Towards building a hybrid model for predicting stock indexes[C]//2017 IEEE International Conference on Big Data(Big Data).2017:4128-4133. [68] ASSIS C A S,PEREIRA A C M,CARRANO E G,et al.Restricted Boltzmann machines for the prediction of trends in financial time series[C]//2018 International Joint Conference on Neural Networks.2018:1-8. [69] CHEN W,YEO C K,LAU C T,et al.Leveraging social media news to predict stock index movement using RNN-boost[J].Data & Knowledge Engineering,2018,118:14-24. [70] CHEN Y,LIN W,WANG J Z.A dual-attention-based stockprice trend prediction model with dual features[J].IEEE Access,2019,7:148047-148055. |
[1] | RAO Zhi-shuang, JIA Zhen, ZHANG Fan, LI Tian-rui. Key-Value Relational Memory Networks for Question Answering over Knowledge Graph [J]. Computer Science, 2022, 49(9): 202-207. |
[2] | LENG Dian-dian, DU Peng, CHEN Jian-ting, XIANG Yang. Automated Container Terminal Oriented Travel Time Estimation of AGV [J]. Computer Science, 2022, 49(9): 208-214. |
[3] | NING Han-yang, MA Miao, YANG Bo, LIU Shi-chang. Research Progress and Analysis on Intelligent Cryptology [J]. Computer Science, 2022, 49(9): 288-296. |
[4] | TANG Ling-tao, WANG Di, ZHANG Lu-fei, LIU Sheng-yun. Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy [J]. Computer Science, 2022, 49(9): 297-305. |
[5] | XU Yong-xin, ZHAO Jun-feng, WANG Ya-sha, XIE Bing, YANG Kai. Temporal Knowledge Graph Representation Learning [J]. Computer Science, 2022, 49(9): 162-171. |
[6] | LI Yao, LI Tao, LI Qi-fan, LIANG Jia-rui, Ibegbu Nnamdi JULIAN, CHEN Jun-jie, GUO Hao. Construction and Multi-feature Fusion Classification Research Based on Multi-scale Sparse Brain Functional Hyper-network [J]. Computer Science, 2022, 49(8): 257-266. |
[7] | WANG Jian, PENG Yu-qi, ZHAO Yu-fei, YANG Jian. Survey of Social Network Public Opinion Information Extraction Based on Deep Learning [J]. Computer Science, 2022, 49(8): 279-293. |
[8] | HAO Zhi-rong, CHEN Long, HUANG Jia-cheng. Class Discriminative Universal Adversarial Attack for Text Classification [J]. Computer Science, 2022, 49(8): 323-329. |
[9] | JIANG Meng-han, LI Shao-mei, ZHENG Hong-hao, ZHANG Jian-peng. Rumor Detection Model Based on Improved Position Embedding [J]. Computer Science, 2022, 49(8): 330-335. |
[10] | ZHANG Guang-hua, GAO Tian-jiao, CHEN Zhen-guo, YU Nai-wen. Study on Malware Classification Based on N-Gram Static Analysis Technology [J]. Computer Science, 2022, 49(8): 336-343. |
[11] | HE Qiang, YIN Zhen-yu, HUANG Min, WANG Xing-wei, WANG Yuan-tian, CUI Shuo, ZHAO Yong. Survey of Influence Analysis of Evolutionary Network Based on Big Data [J]. Computer Science, 2022, 49(8): 1-11. |
[12] | SUN Qi, JI Gen-lin, ZHANG Jie. Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection [J]. Computer Science, 2022, 49(8): 172-177. |
[13] | HOU Yu-tao, ABULIZI Abudukelimu, ABUDUKELIMU Halidanmu. Advances in Chinese Pre-training Models [J]. Computer Science, 2022, 49(7): 148-163. |
[14] | ZHOU Hui, SHI Hao-chen, TU Yao-feng, HUANG Sheng-jun. Robust Deep Neural Network Learning Based on Active Sampling [J]. Computer Science, 2022, 49(7): 164-169. |
[15] | SU Dan-ning, CAO Gui-tao, WANG Yan-nan, WANG Hong, REN He. Survey of Deep Learning for Radar Emitter Identification Based on Small Sample [J]. Computer Science, 2022, 49(7): 226-235. |
|