Computer Science ›› 2022, Vol. 49 ›› Issue (6A): 784-789.doi: 10.11896/jsjkx.210400030
• Interdiscipline & Application • Previous Articles Next Articles
WANG Fei, HUANG Tao, YANG Ye
CLC Number:
[1] BALIGA B J.IGBT devices-physics,design and applications[M].Beijing Machinery Industry Press,2018. [2] CHEN B,LU G,FANG H Z,et al.IGBT health parameter prediction method based on degenerate data and DBN algorithm[J].Computer Measurement and Control,2017,25(5):71-75. [3] SMET V,FOREST F,HUSELSTEIN J J,et al.Ageing andFailure Modes of IGBT Modules in High-Temperature Power Cycling[J].IEEE Transactions on Industrial Electronics,2011,58(10):4931-4941. [4] ALGHASSI A,PERINPANAYAGAM S,SAMIE M.Stochastic RUL Calculation Enhanced With TDNN-Based IGBT Failure Modeling[J].IEEE Transactions on Reliability,2016,65(2):558-573. [5] LI M,ZHU J J,LONG B.Particle Filter Approach for IGBT Remaining Useful Life[J].AMR,2014,981:86-89. [6] WU H W,YE C J,ZHANG Y T,et al.Remaining Useful Life Prediction of an IGBT Module in Electric Vehicles Statistical Analysis[J].Symmetry,2020,12(8):1325. [7] ADLA I,LOTFI S.A New Data-Driven Approach for Power IGBT Remaining Useful Life Estimation Based On Feature Reduction Technique and Neural Network[J].Electronics,2020,9(10):1571. [8] AHSAN M,HON T S,BATUNLU C,et al.Reliability Assessment of IGBT Through Modelling and Experimental Testing[J].IEEE Access,2020,8:39561-39573. [9] LU G Z.Research on Life Prediction Technology of IGBTPower Module[D].Chongqing:Chongqing University,2012. [10] DU X,LI G X,LIU H J,et al.The Influence of Wind Speed Probability Distribution on the Life of Power Devices in Wind Power Converters[J].Journal of Electrotechnical Technology,2015,30(15):109-117. [11] THEBAUD J,WORIGARD E.Strategy for designing accele-rated aging tests to evaluate IGBT power modules lifetime in real operation mode[J].IEEE Transactions on Components and Packaging Technologies,2003,26(2):429-438. [12] LIU B L,LIU D Z,TANG Y,et al.Life prediction and failureanalysis of IGBT module based on accelerated life test[J].Journal of Jiangsu University,2013,34(5):556-563. [13] WANG X C,ZHAO J J.Research on IGBT lifetime based on wavelet neural network[J].Electrotechnical,2020(10):114-116. [14] HAN G G.Research on IGBT fault prediction based on deep learning[D].Beijing:Beijing Jiaotong University,2019. [15] SHI Y Z,GUO B,ZHENG Y J.Research on IGBT lifetime prediction based on LSTM network[J/OL].China Test.http://kns.cnki.net/kcms/detail/51.1714.TB.20200810.1312.006.html. [16] LIU H,LANG B.Machine learning and deep learning methods for intrusion detection systems:A survey[J].Applied Sciences,2019,9(20):4396. [17] YANG R X,SUN C Y,XU L.Prediction of photovoltaic power generation based on stacking model fusion[J].Computer System Application,2020,29(5):36-45. [18] KE G L.Lightgbm:A highly efficient gradient boosting decision tree[J].Advances in Neural Information Processing Systems,2017,30:3146-3154. [19] CHEN T,GUESTRIN C.XGBoost:A Scalable Tree Boosting System [C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.San Francisco,California,USA,Association for Computing Machinery,2016:785-94. [20] MARQUARDT D W,SNEE R D.Ridge Regression in Practice[J].The American Statistician,1975,29(1):3-20. [21] HUANG H,MAWBY P A.A Lifetime Estimation Technique for Voltage Source Inverters[J].IEEE Transactions on Power Electronics,2013,28(8):4113-4119. [22] CELAYA J,WYSOCKI P,GOBEL K.IGBT accelerated aging data set[J/OL].NASA Ames Prognostics Data Repository,2009.https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/#igbt. [23] SONNENFELD G,KAI G,CELAYA J R,et al.An agile acce-lerated aging,characterization and scenario simulation system for gate controlled power transistors[J].IEEE Autotestcon,2008,6:208-215. |
[1] | LENG Dian-dian, DU Peng, CHEN Jian-ting, XIANG Yang. Automated Container Terminal Oriented Travel Time Estimation of AGV [J]. Computer Science, 2022, 49(9): 208-214. |
[2] | NING Han-yang, MA Miao, YANG Bo, LIU Shi-chang. Research Progress and Analysis on Intelligent Cryptology [J]. Computer Science, 2022, 49(9): 288-296. |
[3] | HE Qiang, YIN Zhen-yu, HUANG Min, WANG Xing-wei, WANG Yuan-tian, CUI Shuo, ZHAO Yong. Survey of Influence Analysis of Evolutionary Network Based on Big Data [J]. Computer Science, 2022, 49(8): 1-11. |
[4] | LI Yao, LI Tao, LI Qi-fan, LIANG Jia-rui, Ibegbu Nnamdi JULIAN, CHEN Jun-jie, GUO Hao. Construction and Multi-feature Fusion Classification Research Based on Multi-scale Sparse Brain Functional Hyper-network [J]. Computer Science, 2022, 49(8): 257-266. |
[5] | WANG Xin-tong, WANG Xuan, SUN Zhi-xin. Network Traffic Anomaly Detection Method Based on Multi-scale Memory Residual Network [J]. Computer Science, 2022, 49(8): 314-322. |
[6] | ZHANG Guang-hua, GAO Tian-jiao, CHEN Zhen-guo, YU Nai-wen. Study on Malware Classification Based on N-Gram Static Analysis Technology [J]. Computer Science, 2022, 49(8): 336-343. |
[7] | CHEN Ming-xin, ZHANG Jun-bo, LI Tian-rui. Survey on Attacks and Defenses in Federated Learning [J]. Computer Science, 2022, 49(7): 310-323. |
[8] | KANG Yan, XU Yu-long, KOU Yong-qi, XIE Si-yu, YANG Xue-kun, LI Hao. Drug-Drug Interaction Prediction Based on Transformer and LSTM [J]. Computer Science, 2022, 49(6A): 17-21. |
[9] | LI Ya-ru, ZHANG Yu-lai, WANG Jia-chen. Survey on Bayesian Optimization Methods for Hyper-parameter Tuning [J]. Computer Science, 2022, 49(6A): 86-92. |
[10] | ZHAO Lu, YUAN Li-ming, HAO Kun. Review of Multi-instance Learning Algorithms [J]. Computer Science, 2022, 49(6A): 93-99. |
[11] | WANG Shan, XU Chu-yi, SHI Chun-xiang, ZHANG Ying. Study on Cloud Classification Method of Satellite Cloud Images Based on CNN-LSTM [J]. Computer Science, 2022, 49(6A): 675-679. |
[12] | XIAO Zhi-hong, HAN Ye-tong, ZOU Yong-pan. Study on Activity Recognition Based on Multi-source Data and Logical Reasoning [J]. Computer Science, 2022, 49(6A): 397-406. |
[13] | YAO Ye, ZHU Yi-an, QIAN Liang, JIA Yao, ZHANG Li-xiang, LIU Rui-liang. Android Malware Detection Method Based on Heterogeneous Model Fusion [J]. Computer Science, 2022, 49(6A): 508-515. |
[14] | XU Jie, ZHU Yu-kun, XING Chun-xiao. Application of Machine Learning in Financial Asset Pricing:A Review [J]. Computer Science, 2022, 49(6): 276-286. |
[15] | LI Ye, CHEN Song-can. Physics-informed Neural Networks:Recent Advances and Prospects [J]. Computer Science, 2022, 49(4): 254-262. |
|