Computer Science ›› 2022, Vol. 49 ›› Issue (7): 226-235.doi: 10.11896/jsjkx.210600138
• Computer Network • Previous Articles Next Articles
SU Dan-ning1, CAO Gui-tao1, WANG Yan-nan1, WANG Hong2, REN He2
CLC Number:
[1]LANGLEY L E.Specific emitter identification(SEI) and classical parameter fusion technology[C]//Proceedings of WESCON'93.IEEE,2002. [2]ZHANG G Z.Research on Radar Radiator Recognition Techno-logy [D].Changsha:National University of Defense Techno-logy,2005. [3]MARK A R.Fundamentals of Radar Signal Processing(2nded.)[M]//USA:McGraw-Hill Education,2014:213-215. [4]JORDANOV I,PETROV N.Sets With Incomplete and Missing Data-NN Radar Signal Classification[C]//International Joint Conference on Neural Networks(IJCNN).Beijing,China,2014:218-224. [5]HINTON G E,OSINDERO S,TEH Y W.A Fast Learning Algorithm for Deep Belief Nets[J].Neural Computation,2014,18(7):1527-1554. [6]RUSSAKOVSKY O,DENG J,SU H,et al.Imagenet large scale visual recognition challenge[J].International Journal of Computer Vision,2015,115(3):211-252. [7]XU H Q,LIU G.Reviews on Radar Emitter Recognition[J].Shipment Electronic Engineering,2010,30(4):25-27. [8]LI M,ZHU W G,CHEN W G.Study of Radar Emitter Identification Based on Machine Learning[J].Journal of Ordnance Equipment Engineering,2016,37(9):171-175. [9]GUO S,WHITE R E,LOW M.A comparison study of radaremitter identification based on signal transients[C]//2018 IEEE Radar Conference(RadarConf18).IEEE,2018. [10]JIN Q,WANG H Y,MA F F.An Overview of Radar Emitter Classification and Identification Methods[J].Telecommunications Technology,2019,59(3):360-368. [11]MENG L,QU W,CAI K,et al.Overview of Radar Emitter Identification Based on Machine Learning[J].Journal of Ordnance Equipment Engineering,2020,41(10):16-21. [12]ZHANG G Z,HUANG K S,JIANG W L,et al.Emitter feature extract method based on signal envelope[J].System Engineering and Electronic Technology,2006(6):795-797,936. [13]CHOI H I,WILLIAM S.Improved time-frequency representation of multicomponent signals using exponential kernels[J].Acoustics,Speech and Signal Processing,IEEE Transactions,1989,37(6):862-871. [14]KAWALEC A,OWCZAREK R.Specific emitter identification using intrapulse data[C]//Proceedings of 1st European Radar Conference.Amsterdam,Netherlands,2004:249-252. [15]D'AGOSTINO S,FOGLIA G,PISTOIA D.Specific emitteridentification:analysis on real radar signal data [C]//Procee-dings of the 6th European Radar Conference.Rome,Italy,2009:242-245. [16]CONNING M,POTGIETER F.Analysis of measured radar data for specific emitter identification[C]//Proceedings of IEEE Radar Conference.Arlington,VA,USA,2010:35-38. [17]YE H H,LIU Z,JIANG W L,et al.A Comparison of Unintentional Modulation on Pulse Features with the Consideration of Doppler Effect[J].Journal of Electronics and Information,2012,34(11):2654-2659. [18]FENG Z,LIANG M,CHU F.Recent advances in time-frequency analysis methods for machinery fault diagnosis:A review with application examples[J].Mechanical Systems & Signal Proces-sing,2013,38(1):165-205. [19]COHEN L.Time-Frequency Distribution-A Review[J].Proceedings of the IEEE,1989,77(7):941-981. [20]ZHANG X.On High-order statistical analysis,Modem SignalProcessing [M].Beijing:Tsinghua University Press,2015:217-228. [21]CAI Z W,LI J D.Individual Recognition of Communication Radiator Based on Bispectrum[J].Journal of Communications,2007(2):75-79. [22]CHENG C X,HE M H,ZHU Y Q,et al.Extraction of indivi-dual characteristics of radar emitters based on bispectrum analysis[J].System Engineering and Electronic Technology,2008(6):1046-1049. [23]WANG C,WANG J,ZHANG X.Automatic radar waveformrecognition based on time-frequency analysis and convolutional neural network[C]//IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP).2017:2437-2441. [24]WEI S,QU Q,SU H,et al.Intra-pulse modulation radar signal recognition based on CLDN network[J].IET Radar,Sonar & Navigation,2020,14(6):803-810. [25]ZHU K F,WANG X G,LIU Y J.Radar target recognition algorithm based on data augmentation and WACGAN under small sample conditions[J].Journal of Electronics,2020,48(6):1124-1131. [26]SAINATH T N,VINYALS O,SENIOR A,et al.Convolu-tional,Long Short-Term Memory,fully connected Deep Neural Networks[C]//IEEE International Conference on Acoustics.IEEE,2015. [27]HOCHREITER S,SCHMIDHUBER J.Long Short-Term Memory[J].Neural Computation,1997,9(8):1735-1780. [28]BAGWE R,KACHHIA J,ERDOGAN A,et al.Automated Radar Signal Analysis Based on Deep Learning[C]//2020 10th Annual Computing and Communication Workshop and Confe-rence(CCWC).IEEE,2020. [29]ZHENG Y,SHEN Y J,ZHOU Y S.Radar signal intra-pulse modulation recognition based on multi-layer two-way LSTM[J].Telemetry and remote control,2019,40(1):37-45. [30]QIN X,HUANG J,WANG J T,et al.Individual Radar Radiator Recognition Based on Unintentional Phase Modulation Characteristics[J].Journal on Communications,2020,41(5):104-111. [31]SCHMIDHUBE R,JÜRGE N.Deep Learning in Neural Networks:An Overview[J].Neural Netw,2015,61:85-117. [32]BENGIO Y,LAMBLIN P,POPOVICI D,et al.Greedy layer-wise training of deep networks[C]//Advances in Neural Information Processing Systems 19,Proceedings of the Twentieth Annual Conference on Neural Information Processing Systems.Vancouver.British Columbia,Canada,2006. [33]VINCENT P,LAROCHELLE H,BENGIO Y,et al.Extracting and Composing Robust Features with Denoising Autoencoders[C]//Machine Learning,Proceedings of the Twenty-Fifth International Conference(ICML 2008).Helsinki,Finland,2008. [34]MASCI J,MEIER U,CIRESAN D,et al.Stacked Convolutional Auto-Encoders for Hierarchical Feature Extraction[J].SpringerVerlag,2011(6791):52-59. [35]ZHOU Z W,HUANG G M,GAO J,et al.A Deep Learning Radar Radiator Recognition Algorithm[J].Journal of Xidian University(Natural Science Edition),2017,44(3):83-88. [36]GUO L M,KOU Y H,CHEN T,et al.Modulation type recognition of radar signal with low probability of interception under low signal-to-noise ratio based on stacked sparse autoencoder[J].Journal of Electronics and Information,2018,40(4):875-881. [37]ZHANG M,WANG H,ZHOU K,et al.Low Probability of Intercept Radar Signal Recognition by Staked Autoencoder and SVM[C]//2018 10th International Conference on Wireless Communications and Signal Processing(WCSP).2018. [38]GAO P C,JIAO S H.Radar radiator individual recognition based on variational autoencoder[J].Applied Technology,2020,47(4):59-65. [39]ZHOU Y,WANG X,CHEN Y,et al.Specific Emitter Identification via Bispectrum-Radon Transform and Hybrid Deep Model[J].Mathematical Problems in Engineering,2020,2020(1):1-17. [40]KONG G,JUNG M,KOIVUNEN V.Waveform Recognition in Multipath Fading using Autoencoder and CNN with Fourier Synchrosqueezing Transform[C]//IEEE International Radar Conference(RADAR).IEEE,2020:612-617. [41]KRIZHEVSKY A,SUTSKEVER I,HINTON G.ImageNetClassification with Deep Convolutional Neural Networks[C]//NIPS.Curran Associates Inc.2012. [42]ZEILER M D,FERGUS R.Visualizing and Understanding Convolutional Networks[C]//European Conference on Computer Vision.Springer International Publishing,2013. [43]SIMONYAN K,ZISSERMAN A.Very Deep Convolutional Networks for Large-Scale Image Recognition[J/OL].https://ar-Xiv.org/abs/1409.1556. [44]SZEGEDY C,LIU W,JIA Y,et al.Going Deeper with Convolutions[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).2015:1-9. [45]HE K,ZHANG X,REN S,et al.Deep Residual Learning for Image Recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).2016:770-778. [46]LIU Z,SHI Y,ZENG Y,et al.Radar Emitter Signal Detection with Time-Frequency Image Processing and Convolutional Neural Network[C]//2019 IEEE 11th International Conference on Advanced Infocomm Technology(ICAIT).IEEE,2019. [47]LI K.Radar Emitter Identification Based on Improved Convolutional Neural Network[C]//IEEE 3rd Advanced Information Management,Communicates,Electronic and Automation Control Conference(IMCEC).IEEE,2019. [48]WANG G M,CHEN S W,HUANG J,et al.Radar signal sorting and recognition based on transfer deep learning[J].Computer Science and Applications,2019,9(9):18. [49]SHI L M,YANG C Z,WU H C.Radar signal recognition me-thod based on deep residual network and triple loss[J].System Engineering and Electronic Technology,2020,42(11):2506-2512. [50]SI W,WAN C,ZHANG C.Towards an accurate radar waveformrecognition algorithm based on dense CNN[J].Multimedia Tools and Applications,2021(80):1779-1792. [51]CAI J J,LI C,ZHANG H Y.Modulation Recognition of Radar Signal Based on an Improved CNN Model[C]//2019 IEEE 7th International Conference on Computer Science and Network Technology(ICCSNT).2019:304-308. [52]HU J,SHEN L,SUN G.Squeeze-and-excitation net orks[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City,USA,2018:7132-7141. [53]QU Q,WEI S,SU H,et al.Radar Signal Recognition Based on Squeeze-and-Excitation Networks[C]//2019 IEEE International Conference on Signal,Information and Data Processing(ICSIDP).2019:1-5. [54]WEI S,QU Q,WANG M,et al.Automatic Modulation Recognition for Radar Signals via Multi-branch ACSE Networks[J].IEEE Access,2020,8:94923-94935. [55]WANG X,HUANG G,MA C,et al.Convolutional neural network applied to specific emitter identification based on pulse waveform images[J].IET Radar,Sonar & Navigation,2020,14(5):728-735. [56]AKYON F C,ALP Y K,GOK G,et al.Classification of Intra-Pulse Modulation of Radar Signals by Feature Fusion Based Convolutional Neural Networks[C]//2018 26th European Signal Processing Conference(EUSIPCO).2018:2290-2294. [57]WANG Q,DU P,YANG J,et al.Transferred deep learningbased waveform recognition for cognitive passive radar[J].Signal Processing,2019,155(2):259-267. [58]KHANH N,LONG D V, DONG Q T.A Parallel Neural Network-based Scheme for Radar Emitter Recognition[C]//2020 14th International Conference on Ubiquitous Information Mana-gement and Communication(IMCOM).2020:1-8. [59]LI Y,SHAO G,WANG B.Automatic Modulation Classification Based on Bispectrum and CNN[C]//2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference(ITAIC).IEEE,2019. [60]GAO Y Y,ZHANG W B.New Radar Radiation Source Recognition[J].Chinese Journal of Image and Graphics,2020,25(6):1171-1179. [61]ZHENG Y,CHEN Y J,ZHOU Y S.Faster r-cnn realizes modulation recognition and parameter extraction of overlapping radar signals[J].Telemetry and Remote Control,2019,40(3):32-40. [62]HOANG L M,KIM M J,KONG S H.Deep Learning Approach to LPI Radar Recognition[C]//2019 IEEE Radar Conference(RadarConf19).IEEE,2019. [63]ZHU M T, LI Y J, PAN Z S,et al.Automatic modulation recognition of compound signals using a deep multi-label classifier:A case study with radar jamming signals[J/OL].https://www.researchgate.net/publication/337392227_Automatic_Modulation_Recognition_of_Compound_Signals_using_a_Deep_Multi-Label_Classifier_A_Case_Study_with_Radar_Jamming_Signals. [64]PAN Z,WANG S,ZHU M,et al.Automatic Waveform Recognition of Overlapping LPI Radar Signals Based on Multi-Instance Multi-Label Learning[J].IEEE Signal Processing Letters,2020,27:1275-1279. [65]MING Z,MING D,LIPENG G,et al.Angel Garrido.Neural Networks for Radar Waveform Recognition[J/OL].https://www.docin.com/p-2278363898.html. [66]QU Z,WANG W,HOU C,et al.Radar Signal Intra-Pulse Mo-dulation Recognition Based on Convolutional Denoising Autoencoder and Deep Convolutional Neural Network[J].IEEE Access,2019,7:112339-112347. [67]ZHOU Z,HUANG G,CHEN H,et al.Automatic Radar Waveform Recognition Based on Deep Convolutional Denoising Auto-encoders[J].Circuits Systems & Signal Processing,2018,37:4034-4048. [68]CUI B Y,TIAN R L,WANG D F,et al.Radar radiation source recognition based on attention mechanism and improved CLDNN[J].System Engineering and Electronic Technology,2021,43(5):1224-1231. [69]HUANG Y K,JIN W D,YU Z B,et al.Radiation source signalrecognition based on deep learning and integrated learning[J].Systems Engineering and Electronic Technology,2018,40(11):33-38. [70]SILVER D,HUANG A,MADDISON C J,et al.Mastering the game of Go with deep neural networks and tree search[J].Nature,2016,529(7587):484-489. [71]GAO Y,CHEN S F,LU X.Review of Reinforcement Learning Research[J].Acta Automatica Sinica,2004(1):86-100. [72]LENG P F,XU C Y.A deep reinforcement learning method for individual identification of radar emitters[J].Acta Armamentarii,2018,39(12):134-140. [73]QU Z,HOU C,HOU C,et al.Radar Signal Intra-Pulse Modulation Recognition Based on Convolutional Neural Network and Deep Q-Learning Network[J].IEEE Access,2020,8:49125-49136. [74]LI M,ZHU W G.Radar Radiation Source Recognition withMissing Database Samples[J].Telecommunications Techno-logy,2017,57(7):784-788. [75]RAN X,ZHU W.Radar emitter identification based on discriminant joint distribution adaptation[C]//2019 IEEE 3rd Advanced Information Management,Communicates,Electronic and Automation Control Conference(IMCEC).IEEE,2019. [76]XIAO Y,LIU W,GAO L.Radar Signal Recognition Based on Transfer Learning and Feature Fusion[J].Mobile Networks and Applications,2020,25:1563-1571. [77]REN K,YE H,GU G,et al.Pulses Classification Based onSparse Auto-Encoders Neural Networks[J].IEEE Access,2019,7:92651-92660. [78]ZHU W,LI M,ZENG C.Research on Online Learning of Radar Emitter Recognition Based on Hull Vector[C]//IEEE Second International Conference on Data Science in Cyberspace.IEEE,2017. [79]FENG Y,CHENG Y,WANG G,et al.Radar Emitter Identifica-tion under Transfer Learning and Online Learning[J/OL].https://www.researchgate.net/publication/338167669_Radar_Emitter_Identification_under_Transfer_Learning_and_Online_Learning. [80]LI T,SU S Y,CHEN Z P,et al.A real-time recognition method of radar intra-pulse modulation in EW receiver[J].Modern Electronic Technology,2013,36(21):9-14. |
[1] | XU Yong-xin, ZHAO Jun-feng, WANG Ya-sha, XIE Bing, YANG Kai. Temporal Knowledge Graph Representation Learning [J]. Computer Science, 2022, 49(9): 162-171. |
[2] | RAO Zhi-shuang, JIA Zhen, ZHANG Fan, LI Tian-rui. Key-Value Relational Memory Networks for Question Answering over Knowledge Graph [J]. Computer Science, 2022, 49(9): 202-207. |
[3] | TANG Ling-tao, WANG Di, ZHANG Lu-fei, LIU Sheng-yun. Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy [J]. Computer Science, 2022, 49(9): 297-305. |
[4] | SUN Qi, JI Gen-lin, ZHANG Jie. Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection [J]. Computer Science, 2022, 49(8): 172-177. |
[5] | WANG Jian, PENG Yu-qi, ZHAO Yu-fei, YANG Jian. Survey of Social Network Public Opinion Information Extraction Based on Deep Learning [J]. Computer Science, 2022, 49(8): 279-293. |
[6] | HAO Zhi-rong, CHEN Long, HUANG Jia-cheng. Class Discriminative Universal Adversarial Attack for Text Classification [J]. Computer Science, 2022, 49(8): 323-329. |
[7] | JIANG Meng-han, LI Shao-mei, ZHENG Hong-hao, ZHANG Jian-peng. Rumor Detection Model Based on Improved Position Embedding [J]. Computer Science, 2022, 49(8): 330-335. |
[8] | HOU Yu-tao, ABULIZI Abudukelimu, ABUDUKELIMU Halidanmu. Advances in Chinese Pre-training Models [J]. Computer Science, 2022, 49(7): 148-163. |
[9] | ZHOU Hui, SHI Hao-chen, TU Yao-feng, HUANG Sheng-jun. Robust Deep Neural Network Learning Based on Active Sampling [J]. Computer Science, 2022, 49(7): 164-169. |
[10] | HU Yan-yu, ZHAO Long, DONG Xiang-jun. Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification [J]. Computer Science, 2022, 49(7): 73-78. |
[11] | CHENG Cheng, JIANG Ai-lian. Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction [J]. Computer Science, 2022, 49(7): 120-126. |
[12] | ZHU Wen-tao, LAN Xian-chao, LUO Huan-lin, YUE Bing, WANG Yang. Remote Sensing Aircraft Target Detection Based on Improved Faster R-CNN [J]. Computer Science, 2022, 49(6A): 378-383. |
[13] | WANG Jian-ming, CHEN Xiang-yu, YANG Zi-zhong, SHI Chen-yang, ZHANG Yu-hang, QIAN Zheng-kun. Influence of Different Data Augmentation Methods on Model Recognition Accuracy [J]. Computer Science, 2022, 49(6A): 418-423. |
[14] | MAO Dian-hui, HUANG Hui-yu, ZHAO Shuang. Study on Automatic Synthetic News Detection Method Complying with Regulatory Compliance [J]. Computer Science, 2022, 49(6A): 523-530. |
[15] | WANG Jun-feng, LIU Fan, YANG Sai, LYU Tan-yue, CHEN Zhi-yu, XU Feng. Dam Crack Detection Based on Multi-source Transfer Learning [J]. Computer Science, 2022, 49(6A): 319-324. |
|