Computer Science ›› 2025, Vol. 52 ›› Issue (6A): 240600003-7.doi: 10.11896/jsjkx.240600003
• Big Data & Data Science • Previous Articles Next Articles
JIANG Haolun1, ZHU Jinxia2, MENG Xiangfu1
CLC Number:
[1]CAI G Y,CHEN X Y,WANG S J.Novel Method Based on Graph Attention Aggregation for POI Recommendations[J].Computer Science,2022,49(S2):289-293. [2]HUANG L W,MA Y T,LIU Y B,et al.Multi-Modal Bayesian Embedding for Point-of-Interest Recommendation on Location-Based Cyber-Physical-Social Networks [J].Future Generation Computer Systems,2020(108):111-1128. [3]YANG C,SUN M S,XIN W Y,et al.A neural network approach to jointly modeling social networks and mobile trajectories[C]//Proceedings of the ACM Transactions International System.2017,36(4):1-28. [4]ZHANG C M,ZHANG A R,ZHANG L,et al.A Graph Neural Networks-Based Learning Framework With Hyperbolic Embedding for Personalized Tag Recommendation[J].IEEE Access,2024(12):339-350. [5]ZENG B Q,CHI J L,HONG P L,et al.Context-aware graph embedding with gate and attention for session-based recommendation[J].Neurocomputing,2024(574):127221. [6]ZHAO P P,ZHU H F,LIU Y C,et al.Where to Go Next:ASpatio-Temporal Gated Network for Next POI Recommendation[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2019:5877-5884. [7]XIAN X F,CHEN X J,ZHAO P P,et al.Context-aware personalized metric embedding for next POI recommendation[J].Computer Engineering & Science,2018,40(4):616-625. [8]CHRISTOFORUDIS G,KEFALAS P,PAPADOPOULOS A,et al.Recommendation of Points-of-Interest using graph embeddings[C]//Proceedings of the Standard Authentication Algorithm.2018:31-40. [9]LI Y,HANG Z Y,AN Z Y.Real-time preference-aware point-of-interest recommendation based on recurrent neural network[J].Computer Engineering an Design,2023,44(12):3772-3777. [10]WU T H,SUN F Z,DONG J W,et al.Context-aware session recommendation based on recurrent neural networks[J].Comput Electr Eng.,2022,100:107916. [11]CHAI R M,YIN C,MENG X F,et al.A recurrent neural network model based on spatial and temporal information for the next point of interest recommendation[J].CAAI Transactions on Intelligent Systems,2021,16(3):407-415. [12]FENG J,LI Y,ZHANG C,et al.DeepMove:Predicting Human Mobility with Attentional Recurrent Networks[C]//Procee-dings of International Conference on World Wide Web.2018:1459-1468. [13]YAN L,ZHAO P P,SHENG V S,et al.Social personalizedranking embedding for next poi recommendation[C]//International Conference on Web Information Systems Engineering.2017:91-105. [14]GUO L,WEN Y F,LIU F G.Location perspective-based neighborhood-aware POI recommendation in location based social networks[J].Soft Computing,2019,23(22):11935-11945. [15]HUANG L W,MA Y T,LIU Y B,et al.DAN-SNR:A Deep Attentive Network for Social-aware Next Point-of-interest Recommendation[C]//Proceedings of the ACM Transactions International System.2021:1-27. [16]ADITYA G,JURE L.node2vec:Scalable feature learning fornetworks[C]//Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2016,855-864. [17]ZHOU C,BAI J Z,SONG J S,et al.Atrank:An attention-based user behavior modeling framework for recommendation[C]//Proceedings of AAAI Conference on Artificial Intelligence.2018,4564-4571. [18]ASHISH V,NOAM S,NIKI P,et al.Attention is all you need.[C]//Proceedings of the Advances in Neural Information Processing Systems.2017:5998-6008. [19]STEFFEN R,CHRISTOPH F,ZENO G,et al.BPR:Bayesian Personalized Ranking from Implicit Feedback.[C]//Proceedings of International Conference on Uncertainty in Artificial Intelligence.2009:452-461. [20]LI H,YUE P,LI S C,et al.Spatio-temporal intention learning for recommendation of next point-of-interest[J].Geo Spatial Inf.Sci.,2024,27(2):384-397. [21]BALAZS H,ALEXANDROS K,LINAS B,et al.Session-based recommendations with recurrent neural networks.[C]//Proceedings of the International Conference on Learning Representations.2015,1511:06939. [22]HUANG L W,M Y T,WANG S B,et al.An Attention-based Spatiotemporal LSTM Network for Next POI Recommendation[C]//Proceedings of the IEEE Transactions International System.2019. [23]OU J J,JIN H M,WANG X C,et al.STA-TCN:Spatial-temporal Attention over Temporal Convolutional Network for Next Point-of-interest Recommendation[J].ACM Transactions on Knowledge Discovery from Data,2023,17(9):1-19. [24]KINGMA D,BA J.Adam:a method for stochastic optimization.[C]//Proceeding of the International Conference on Learning Representations.2015:1412-1427. [25]ZHU J X,MENG X F,XING C Z,et al.Collaborative filtering recommendation approach fused with graph convolutional attention mechanism[J].CAAI Transactions on Intelligent Systems,2023,18(6):1295-1304. |
[1] | LI Bo, MO Xian. Application of Large Language Models in Recommendation System [J]. Computer Science, 2025, 52(6A): 240400097-7. |
[2] | SHI Xincheng, WANG Baohui, YU Litao, DU Hui. Study on Segmentation Algorithm of Lower Limb Bone Anatomical Structure Based on 3D CTImages [J]. Computer Science, 2025, 52(6A): 240500119-9. |
[3] | CHEN Shijia, YE Jianyuan, GONG Xuan, ZENG Kang, NI Pengcheng. Aircraft Landing Gear Safety Pin Detection Algorithm Based on Improved YOlOv5s [J]. Computer Science, 2025, 52(6A): 240400189-7. |
[4] | LIU Bingzhi, CAO Yin, ZHOU Yi. Distillation Method for Text-to-Audio Generation Based on Balanced SNR-aware [J]. Computer Science, 2025, 52(6A): 240900125-5. |
[5] | ZHANG Hang, WEI Shoulin, YIN Jibin. TalentDepth:A Monocular Depth Estimation Model for Complex Weather Scenarios Based onMultiscale Attention Mechanism [J]. Computer Science, 2025, 52(6A): 240900126-7. |
[6] | CHENG Yan, HE Huijuan, CHEN Yanying, YAO Nannan, LIN Guobo. Study on interpretable Shallow Class Activation Mapping Algorithm Based on Spatial Weights andInter Layer Correlation [J]. Computer Science, 2025, 52(6A): 240500140-7. |
[7] | ZHENG Chuangrui, DENG Xiuqin, CHEN Lei. Traffic Prediction Model Based on Decoupled Adaptive Dynamic Graph Convolution [J]. Computer Science, 2025, 52(6A): 240400149-8. |
[8] | WANG Chundong, ZHANG Qinghua, FU Haoran. Federated Learning Privacy Protection Method Combining Dataset Distillation [J]. Computer Science, 2025, 52(6A): 240500132-7. |
[9] | LIAO Sirui, HUANG Feihu, ZHAN Pengxiang, PENG Jian, ZHANG Linghao. DCDAD:Differentiated Context Dependency for Time Series Anomaly Detection Method [J]. Computer Science, 2025, 52(6): 106-117. |
[10] | WANG Teng, XIAN Yunting, XU Hao, XIE Songqi, ZOU Quanyi. Ship License Plate Recognition Network Based on Pyramid Transformer in Transformer [J]. Computer Science, 2025, 52(6): 179-186. |
[11] | WEI Xiaohui, GUAN Zeyu, WANG Chenyang, YUE Hengshan, WU Qi. Hardware-Software Co-design Fault-tolerant Strategies for Systolic Array Accelerators [J]. Computer Science, 2025, 52(5): 91-100. |
[12] | WU Pengyuan, FANG Wei. Study on Graph Collaborative Filtering Model Based on FeatureNet Contrastive Learning [J]. Computer Science, 2025, 52(5): 139-148. |
[13] | CONG Yingnan, HAN Linrui, MA Jiayu, ZHU Jinqing. Research on Intelligent Judgment of Criminal Cases Based on Large Language Models [J]. Computer Science, 2025, 52(5): 248-259. |
[14] | LIU Tengfei, CHEN Liyue, FANG Jiangyi, WANG Leye. SCFNet:Fusion Framework of External Spatial Features for Spatio-temporal Prediction [J]. Computer Science, 2025, 52(4): 110-118. |
[15] | ZHOU Yi, MAO Kuanmin. Research on Individual Identification of Cattle Based on YOLO-Unet Combined Network [J]. Computer Science, 2025, 52(4): 194-201. |
|