Computer Science ›› 2019, Vol. 46 ›› Issue (11A): 103-107.

• Intelligent Computing • Previous Articles     Next Articles

Hierarchy Division of Compound Sentence with Non-saturated Relation Word via Neural Network

YANG Jin-cai, YANG Lu-lu, WANG Yan-yan, SHEN Xian-jun   

  1. (School of Computer,Central China Normal University,Wuhan 430079,China)
  • Online:2019-11-10 Published:2019-11-20

Abstract: Hierarchical division of a compound sentence is the basis of syntactic structure analysis and semantic discrimination.However,the ellipsis of relational markers bring difficulties to the hierarchical division of a compound sentence.This paper combined dependency syntactic trees and word2vec word vector model to extract the syntactic structure and semantic features of compound sentences,then used the neural network to train a hierarchy division model for compound sentences with non-saturated relation word,and the hierarchical division test was carried out on the complex sentences in the test set.The test accuracy of test set is 74%.

Key words: Compound sentence with non-saturated relation word, Depen-dency grammar, Hierarchical division of compound sentence, Neural network, word2vec

CLC Number: 

  • TP751
[1]邢福义.汉语复句研究[M].北京:商务印刷馆,2003[2]李晋霞,刘云.面向计算机的二重复句层次划分研究[C]∥第7届计算语言学联合学术会议论文.2003[3]胡金柱,陈江曼,杨进才,等.基于规则的连用关系标记的自动标识研究[J].计算机科学,2012,39(7):196-200.
[4]杜超华,胡金柱,沈威,等.基于复句语料库分词系统研究 [J].计算机数字与工程,2007,35(5):43-44.
[5]王飞,易绵竹,谭新.基于本体语义网络的语言理解模型[J].计算机科学,2018,45(S1):101-105.
[6]鲁松,白硕,李素建,等.汉语多重关系复句的关系层次分析[J].软件学报,2001,12(7):987-995.
[7]李幸,宗成庆.引入标点处理的层次化汉语长句句法分析方法[J].中文信息学报,2006,20(4):8-15.
[8]吴锋文.基于主谓语知识挖掘的分句语义关联研究[J].语言文字应用,2011,20(4):132-142.
[9]吴锋文.面向信息处理的“一标三句式”复句层次关系判定[J].北方论丛,2012,54(1):64-68.
[10]胡金柱,舒江波,罗进军.汉语复句中分句的语义关联特征[J].语言文字应用,2010,19(4):121-130.
[11]李源,等.基于语义与规则的有标复句层次体系研究[J].计算机工程与科学,2017,39(12):2306-2313.
[12]黄仁,张卫.基于word2vec的互联网商品评论情感倾向研究[J].计算机科学,2016,43(S1):387-389.
[13]MIKOLOV T,SUTSKEVER I,CHEN K,et al.Distributed representations of words and phrases and their compositionality[C]∥Advances in Neural Information Processing Systems.2013: 3111-3119.
[14]MIKOLOV T,CHEN K,CORRADO G,et al.Efficient estimation of word representations in vector space[EB/OL].http://arxiv.org/pdf/1301.3781v3.pdf.
[15]YU M,DREDZE M.Improving lexical embeddings with semantic knowledge[C]∥Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics.Baltimore,Stroudsburg,USA:ACL,2014:545-550.
[16]KINGMA D P,JIMMY B A.Adam:A Method for StochasticOptimization[C]∥3rd International Conference for Learning Representations.San Diego,2015.
[17]TANG D Y,QIN B,LIU T.Document modeling with gated recurrent neural network for sentiment classification[C]∥Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing.2015:1422-1432.
[18]LAI S,XU L,LIU K,et al.Recurrent convolutional neural networks for text classification[C]∥Proceedings of the National Conference on Artifical Intelligence.2015:2267-2273.
[1] NING Han-yang, MA Miao, YANG Bo, LIU Shi-chang. Research Progress and Analysis on Intelligent Cryptology [J]. Computer Science, 2022, 49(9): 288-296.
[2] ZHOU Fang-quan, CHENG Wei-qing. Sequence Recommendation Based on Global Enhanced Graph Neural Network [J]. Computer Science, 2022, 49(9): 55-63.
[3] ZHOU Le-yuan, ZHANG Jian-hua, YUAN Tian-tian, CHEN Sheng-yong. Sequence-to-Sequence Chinese Continuous Sign Language Recognition and Translation with Multi- layer Attention Mechanism Fusion [J]. Computer Science, 2022, 49(9): 155-161.
[4] HAO Zhi-rong, CHEN Long, HUANG Jia-cheng. Class Discriminative Universal Adversarial Attack for Text Classification [J]. Computer Science, 2022, 49(8): 323-329.
[5] WANG Run-an, ZOU Zhao-nian. Query Performance Prediction Based on Physical Operation-level Models [J]. Computer Science, 2022, 49(8): 49-55.
[6] CHEN Yong-quan, JIANG Ying. Analysis Method of APP User Behavior Based on Convolutional Neural Network [J]. Computer Science, 2022, 49(8): 78-85.
[7] ZHU Cheng-zhang, HUANG Jia-er, XIAO Ya-long, WANG Han, ZOU Bei-ji. Deep Hash Retrieval Algorithm for Medical Images Based on Attention Mechanism [J]. Computer Science, 2022, 49(8): 113-119.
[8] YAN Jia-dan, JIA Cai-yan. Text Classification Method Based on Information Fusion of Dual-graph Neural Network [J]. Computer Science, 2022, 49(8): 230-236.
[9] QI Xiu-xiu, WANG Jia-hao, LI Wen-xiong, ZHOU Fan. Fusion Algorithm for Matrix Completion Prediction Based on Probabilistic Meta-learning [J]. Computer Science, 2022, 49(7): 18-24.
[10] YANG Bing-xin, GUO Yan-rong, HAO Shi-jie, Hong Ri-chang. Application of Graph Neural Network Based on Data Augmentation and Model Ensemble in Depression Recognition [J]. Computer Science, 2022, 49(7): 57-63.
[11] ZHANG Ying-tao, ZHANG Jie, ZHANG Rui, ZHANG Wen-qiang. Photorealistic Style Transfer Guided by Global Information [J]. Computer Science, 2022, 49(7): 100-105.
[12] DAI Zhao-xia, LI Jin-xin, ZHANG Xiang-dong, XU Xu, MEI Lin, ZHANG Liang. Super-resolution Reconstruction of MRI Based on DNGAN [J]. Computer Science, 2022, 49(7): 113-119.
[13] LIU Yue-hong, NIU Shao-hua, SHEN Xian-hao. Virtual Reality Video Intraframe Prediction Coding Based on Convolutional Neural Network [J]. Computer Science, 2022, 49(7): 127-131.
[14] XU Ming-ke, ZHANG Fan. Head Fusion:A Method to Improve Accuracy and Robustness of Speech Emotion Recognition [J]. Computer Science, 2022, 49(7): 132-141.
[15] XIONG Luo-geng, ZHENG Shang, ZOU Hai-tao, YU Hua-long, GAO Shang. Software Self-admitted Technical Debt Identification with Bidirectional Gate Recurrent Unit and Attention Mechanism [J]. Computer Science, 2022, 49(7): 212-219.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!