Computer Science ›› 2024, Vol. 51 ›› Issue (6A): 230700111-7.doi: 10.11896/jsjkx.230700111
• Big Data & Data Science • Previous Articles Next Articles
YIN Xudong, CHEN Junyang, ZHOU Bo
CLC Number:
[1]HUANG H X,TANG X D,WEN F,et al.Small object detection method with shallow feature fusion network for chip surface defect detection[J].Scientific Reports,2022,12(1):15-16. [2]SHAO L.Surface Defect Detection Methods for Industrial Pro-ducts:A Review[J].Applied Sciences,2021,11(16):7657;7659. [3]JAIN S,SETH G,PARUTHI A,et al.Synthetic data augmentation for surface defect detection and classification using deep learning[J].Journal of Intelligent Manufacturing,2022,33(4):1007-1020. [4]SIMARD P Y,STEINKRAUS D,PLATT J C.Best Practicesfor Convolutional Neural Networks Applied to Visual Document Analysis[C]//7th International Conference on Document Ana-lysis and Recognition(ICDAR 2003),2-Volume Set,3-6 August 2003,Edinburgh,Scotland,UK.IEEE Computer Society,2003. [5]MORENO-BAREAFJ,STRAZZERA F,JEREZJ M,et al.For-ward noise adjustment scheme for dataaugmentation[C]//Proceedings of 2018 IEEE Symposium Series on Computational Intelligence.2018:728-734. [6]TAYLOR L,NITSCHKE G.Improving deep learning using generic data augmentation[J].arXiv:1708.06020,2017. [7]ZHONG Z,ZHENG L,KANG G,et al.Random Erasing Data Augmentation[J].Proceedings of the AAAI Conference on Artificial Intelligence,2017,34(7):225-228. [8]SHORTEN C,KHOSHGOFTAAR T M.A survey on ImageData Augmentation for Deep Learning[J].Journal of Big Data,2019,6(1):125-127. [9]IAN G,JEAN P B,MEHDI M,et al.Generative adversarial networks[J].Communications of the ACM,2020,63(11):139-144. [10]ZHU X H,QIAN L P,FU W.Research review of image data enhancement technology[J].Journal of Software Guide,2019,20(5):230-236. [11]WANG H W,QIU X H.A method of image data expansion based on generative adversarial network[J].Journal of Computer Technology and Development,2020,30(3):6-8. [12]OUYANG X,CHENG Y,JIANG Y,et al.Pedestrian-Synthesis-GAN:Generating Pedestrian Data in Real Scene and Beyond[J].arXiv:1804.02047,2018. [13]ISOLA P,ZHU J Y,ZHOU T,et al.Image-to-image translation with conditional adversarial networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:1125-1134. [14]LIN Z P,ZENG L B,WU Q S.Cervical cell image data enhancement based on generative adversarial network[J].Science Technology and Engineering,2019,20(28):11672-11677. [15]RADFORD A,METZ L,CHINTALA S.Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks[J].Computer Ence,2015(7):35-36. [16]SUN X,DING X L.Facial Expression data enhancement Method based on generative adversarial network[J].Computer Engineering and Applications,2020,56(4):115-121. [17]LUO Y T,DUAN C,JIANG P F,etal.An improved method of industrial defect data enhancement based on pix2pix[J].Computer Engineering and Science,2022,44(12):2206-2212. [18]SONG C,XIE Z P.Data set enhancement quality evaluationmethod for Chinese error correction tasks[J/OL].Computer Engineering and Application:1-12.[2023-02-23].http://kns.cnki.net/kcms/detail/11.2127.TP.20230214.1447.036.html. [19]LIN X,LIN N,FU Y,et al.How to choose “Good” Samples for Text Data Augmentation[J].Computation and Language,2023,6(1):50. [20]LAKSHMINARAYANAN B,PRITZEL A,BLUNDELL C.Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. 2016,(9):74-76.. [21]CHEN C,YUAN J,LU Y,et al.OoDAnalyzer:Interactive Ana-lysis of Out-of-Distribution Samples[J].IEEE Transactions on Visualization and Computer Graphics,2020,27(7):3335-3349. [22]SIMONYAN K,ZISSERMAN A.Very Deep Convolutional Networks for Large-Scale Image Recognition[J].Computer Science,2014,(7)11-12. [23]HE K,ZHANG X,REN S,et al.Deep residual learning forimage recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:770-778. [24]GHOWARD A,ZHU M L,CHEN B,et al.Mobilenets:Efficient convolutional neural networks for mobile vision applications[J].arXiv:1704.04861,2017. [25]SZEGEDY C,VANHOUCKE V,IOFFE S,et al.Rethinking the Inception Architecture for Computer Vision[J].IEEE,2016(10):2818-2826. [26]CHIN C S,JIANTING S,CLARE A S,et al.Intelligent Image Recognition System for Marine Fouling Using Softmax Transfer Learning and Deep Convolutional Neural Networks[J].Complexity,2017,2017:1-9. [27]LI Y,ZHANG Y F,XU Y L,et al.Characteristics and nonlinear dimension reduction based on depth image datasets visualization methods[J].Computer Application Research,2017,34(2):5. [28]ZHAO Q.Review of Principal Component Analysis methods[J].Software Engineering,2016,19(6):1-3. [29]TSAI F S.Comparative Study of Dimensionality ReductionTechniques for Data Visualization[J].Journal of Artificial Intelligence,2010,3(3):294-303. [30]AHMED M,SERAJ R,ISLAM S M S.The k-means Algo-rithm:A Comprehensive Survey and Performance Evaluation[J].Electronics,2020,9(8),1295. [31]LIN T Y,GOYAL P,GIRSHICK R,et al.Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision.2017:2980-2988. |
[1] | ZHANG Le, YU Ying, GE Hao. Mural Inpainting Based on Fast Fourier Convolution and Feature Pruning Coordinate Attention [J]. Computer Science, 2024, 51(6A): 230400083-9. |
[2] | WU Yibo, HAO Yingguang, WANG Hongyu. Rice Defect Segmentation Based on Dual-stream Convolutional Neural Networks [J]. Computer Science, 2024, 51(6A): 230600107-8. |
[3] | HOU Linhao, LIU Fan. Remote Sensing Image Fusion Combining Multi-scale Convolution Blocks and Dense Convolution Blocks [J]. Computer Science, 2024, 51(6A): 230400110-6. |
[4] | HUANG Yuanhang, BIAN Shan, WANG Chuntao. Gaussian Enhancement Module for Reinforcing High-frequency Details in Camera ModelIdentification [J]. Computer Science, 2024, 51(6A): 230700125-5. |
[5] | SUN Yang, DING Jianwei, ZHANG Qi, WEI Huiwen, TIAN Bowen. Study on Super-resolution Image Reconstruction Using Residual Feature Aggregation NetworkBased on Attention Mechanism [J]. Computer Science, 2024, 51(6A): 230600039-6. |
[6] | SHI Songhao, WANG Xiaodan, YANG Chunxiao, WANG Yifei. SAR Image Target Recognition Based on Cross Domain Few Shot Learning [J]. Computer Science, 2024, 51(6A): 230800136-7. |
[7] | LI Yuanxin, GUO Zhongfeng, YANG Junlin. Container Lock Hole Recognition Algorithm Based on Lightweight YOLOv5s [J]. Computer Science, 2024, 51(6A): 230900021-6. |
[8] | DAI Yongdong, JIN Yang, DAI Yufan, FU Jing, WANG Maofei, LIU Xi. Study on Intelligent Defect Recognition Algorithm of Aerial Insulator Image [J]. Computer Science, 2024, 51(6A): 230700172-5. |
[9] | HUANG Haixin, WU Di. Steel Defect Detection Based on Improved YOLOv7 [J]. Computer Science, 2024, 51(6A): 230800018-5. |
[10] | MENG Xiangfu, REN Quanying, YANG Dongshen, LI Keqian, YAO Keyu, ZHU Yan. Literature Classification of Individual Reports of Adverse Drug Reactions Based on BERT and CNN [J]. Computer Science, 2024, 51(6A): 230400049-6. |
[11] | JIAO Ruodan, GAO Donghui, HUANG Yanhua, LIU Shuo, DUAN Xuanfei, WANG Rui, LIU Weidong. Study and Verification on Few-shot Evaluation Methods for AI-based Quality Inspection in Production Lines [J]. Computer Science, 2024, 51(6A): 230700086-8. |
[12] | WANG Yingjie, ZHANG Chengye, BAI Fengbo, WANG Zumin. Named Entity Recognition Approach of Judicial Documents Based on Transformer [J]. Computer Science, 2024, 51(6A): 230500164-9. |
[13] | LIANG Fang, XU Xuyao, ZHAO Kailong, ZHAO Xuanfeng, ZHANG Guijun. Remote Template Detection Algorithm and Its Application in Protein Structure Prediction [J]. Computer Science, 2024, 51(6A): 230600225-7. |
[14] | PENG Bo, LI Yaodong, GONG Xianfu, LI Hao. Method for Entity Relation Extraction Based on Heterogeneous Graph Neural Networks and TextSemantic Enhancement [J]. Computer Science, 2024, 51(6A): 230700071-5. |
[15] | ZHANG Tianchi, LIU Yuxuan. Research Progress of Underwater Image Processing Based on Deep Learning [J]. Computer Science, 2024, 51(6A): 230400107-12. |
|