Computer Science ›› 2025, Vol. 52 ›› Issue (8): 171-179.doi: 10.11896/jsjkx.240700008
• Database & Big Data 6 Data Science • Previous Articles Next Articles
ZHANG Shiju1, GUO Chaoyang2, WU Chengliang2, WU Lingjun2, YANG Fengyu1,2
CLC Number:
[1]SAEEDI EMADI H,MAZINANI S M.A novel anomaly detection algorithm using DBSCAN and SVM in wireless sensor networks[J].Wireless Personal Communications,2018,98:2025-2035. [2]WIBISONO S,ANWAR M T,SUPRIYANTO A,et al.Multivariate weather anomaly detection using DBSCAN clustering algorithm[C]//Journal of Physics:Conference Series.IOP Publi-shing,2021. [3]LIU F,XUE S,WU J,et al.Deep learning for community detection:progress,challenges and opportunities[J].arXiv:2005.08225,2020. [4]MENG Y,ZHANG Y,HUANG J,et al.Hierarchical topic min-ing via joint spherical tree and text embedding[C]//Proceedings of the 26th ACM SIGKDD International Conference on Know-ledge Discovery & Data Mining.2020:1908-1917. [5]MACQUEEN J.Some methods for classification and analysis of multivariate observations[C]//Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability.1967:281-297. [6]CELEUX G,GOVAERT G.Gaussian parsimonious clusteringmodels[J].Pattern Recognition,1995,28(5):781-793. [7]ESTER M,KRIEGEL H P,SANDER J,et al.A density-based algorithm for discovering clusters in large spatial databases with noise [C]//Proceedings of the Second International Conference on Knowledge Discovery and Data Mining(KDD'96).1996:226-231. [8]DING C,HE X,SIMON H D.On the equivalence of nonnegative matrix factorization and spectral clustering[C]//Proceedings of the 2005 SIAM International Conference on Data Mining.Society for Industrial and Applied Mathematics,2005:606-610. [9]NG A,JORDAN M,WEISS Y.On spectral clustering:Analysis and an algorithm[C]//NIPS.2002. [10]JIANG B,YE L Y,PAN W F,et al.Service Clustering Based on the Functional Semantics of Requirements.[J].Chinese Journal of Computers,2018,41(6):1035-1046. [11]QIAO S J,HAN N,JIN C Q,et al.A Distributed Text Clustering Model Based on Multi-Agent[J].Chinese Journal of Computers,2018,41(8):1709-1721. [12]XIE J,GIRSHICK R,FARHADI A.Unsupervised deep embedding for clustering analysis[C]//International Conference on Machine Learning.PMLR,2016:478-487. [13]ZHANG D,SUN Y,ERIKSSON B,et al.Deep unsupervisedclustering using mixture of autoencoders[J].arXiv:1712.07788,2017. [14]SHAHAM U,STANTON K,LI H,et al.Spectralnet:Spectral clustering using deep neural networks[J].arXiv:1801.01587,2018. [15]ZHOU S,XU H,ZHENG Z,et al.A comprehensive survey on deep clustering:Taxonomy,challenges,and future directions[J].arXiv:2206.07579,2022. [16]CAI X Y,HUANG J J,BIAN Y C,et al.Isotropy in the Contextual Embedding Space:Clusters and Manifolds[C]//International Conference on Learning Representations.2021. [17]JIANG Z,ZHENG Y,TAN H,et al.Variational deep embedding:A generative approach to clustering[J].arXiv:1611.05145,2016. [18]HADIFAR A,STERCKX L,DEMEESTER T,et al.A self-training approach for short text clustering[C]//Proceedings of the 4th Workshop on Representation Learning for NLP(Rep-L4NLP-2019).2019:194-199. [19]ZHANG W,DONG C,YIN J,et al.Attentive representationlearning with adversarial training for short text clustering[J].IEEE Transactions on Knowledge and Data Engineering,2021,34(11):5196-5210. [20]ZHANG D,NAN F,WEI X,et al.Supporting clustering with contrastive learning[J].arXiv:2103.12953,2021. [21]BAI R N,HUANGR Z,ZHENG L Y,et al.Structure enhanced deep clustering network via a weighted neighbourhood auto-encoder[J].Neural Networks,2022(155):144-154. [22]MIHALCEA R,TARAU P.Textrank:Bringing order into text[C]//Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing.2004:404-411. [23]BLEI D M,NG A Y,JORDAN M I.Latent dirichlet allocation[J].Journal of Machine Learning Research,2003,3:993-1022. [24]WANG D,LIU P,ZHENG Y,et al.Heterogeneous graph neural networks for extractive document summarization[J].arXiv:2004.12393,2020. [25]VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[C]//Procedings of the 31st International Confe-rence on Neural Information Processing Systems.2017:6000-6010. [26]DEVLIN J,CHANG M W,LEE K,et al.Bert:Pre-training of deep bidirectional transformers for language understanding[J].arXiv:1810.04805,2018. [27]TAN J Y,DIAO Y F,QI R H,et al.Automatic summary generation of Chinese news text based on BERT-PGN mode[J].Journal of Computer Applications,2021,41(1):127-132. [28]LEWIS M,LIU Y,GOYAL N,et al.Bart:Denoising sequence-to-sequence pre-training for natural language generation,translation,and comprehension[J].arXiv:1910.13461,2019. [29]RAFFEL C,SHAZEER N,ROBERTS A,et al.Exploring the limits of transfer learning with a unified text-to-text transformer[J].The Journal of Machine Learning Research,2020,21(1):5485-5551. [30]YU W,LU N,QI X,et al.PICK:processing key information extraction from documents using improved graph learning-convolutional networks[C]//2020 25th International Conference on Pattern Recognition(ICPR).IEEE,2021:4363-4370. [31]YI Z L,ZHANG H L,NA R L,el al.Deep text clustering algorithm based on key Semantic Information [J].Application Research of Computers,2023,40(6):1653-1659. [32]ROSE S,ENGEL D,CRAMER N,et al.Automatic Keyword Extraction from Individual Documents[J].text Mining:Application and Theory,2010,4:1-20. [33]MAATEN L V D,HINTON G.Visualizing data using t-SNE[J].Journal of Machine Learning Research,2008,9(86):2579-2605. [34]REB S,DENG Y,HE K,et al.Generating natural language adversarial examples through probability weighted word saliency[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.2019:1085-1097. [35]KOBAYASHI S.Contextual augmentation:Data augmentationby words with paradigmatic relations[J].arXiv:1805.06201,2018. [36]SHEN T,OTT M,AULI M,et al.Mixture models for diverse machine translation:Tricks of the trade[C]//International Conference on Machine Learning.PMLR,2019:5719-5728. [37]LUO C J,ZHAN J F,WANG L,et al.Cosine normalization:Using cosine similarity instead of dot product in neural networks[C]//Artificial Neural Networks and Machine Learning-ICANN 2018.Springer International Publishing,2018:382-391. [38]XU J,XU B,WANG P,et al.Self-taught convolutional neural networks for short text clustering[J].Neural Networks,2017,88:22-31. [39]ZHANG X,LECUN Y.Text understanding from scratch[J].arXiv:1502.01710,2015. [40]YIN J,WANG J.A model-based approach for text clustering with outlier detection[C]//2016 IEEE 32nd International Conference on Data Engineering(ICDE).IEEE,2016:625-636. [41]RASHADUL H R M,ZEH N,JANKOWSKA M,et al.En-hancement of Short Text Clustering by Iterative Classification[J].arXiv:2001.11631,2020. [42]LI H.Statistical learning methods(VersionII)[M].Beijing:Tsinghua University Press,2019. |
[1] | ZHANG Taotao, XIE Jun, QIAO Pingjuan. Specific Emitter Identification Based on Progressive Self-training Open Set Domain Adaptation [J]. Computer Science, 2025, 52(7): 279-286. |
[2] | YE Jiale, PU Yuanyuan, ZHAO Zhengpeng, FENG Jue, ZHOU Lianmin, GU Jinjing. Multi-view CLIP and Hybrid Contrastive Learning for Multimodal Image-Text Sentiment Analysis [J]. Computer Science, 2025, 52(6A): 240700060-7. |
[3] | WANG Baohui, XU Boren, LI Chang’ao, YE Zihao. Study on Algorithm for Keyword Extraction from WeChat Conversation Text [J]. Computer Science, 2025, 52(6A): 240700105-8. |
[4] | FU Shufan, WANG Zhongqing, JIANG Xiaotong. Zero-shot Stance Detection in Chinese by Fusion of Emotion Lexicon and Graph ContrastiveLearning [J]. Computer Science, 2025, 52(6A): 240500051-7. |
[5] | LI Jianghui, DING Haiyan, LI Weihua. Prediction of Influenza A Antigenicity Based on Few-shot Contrastive Learning [J]. Computer Science, 2025, 52(6A): 240800053-6. |
[6] | LIU Yufei, XIAO Yanhui, TIAN Huawei. PRNU Fingerprint Purification Algorithm for Open Environment [J]. Computer Science, 2025, 52(6): 187-199. |
[7] | CHEN Yadang, GAO Yuxuan, LU Chuhan, CHE Xun. Saliency Mask Mixup for Few-shot Image Classification [J]. Computer Science, 2025, 52(6): 256-263. |
[8] | WU Pengyuan, FANG Wei. Study on Graph Collaborative Filtering Model Based on FeatureNet Contrastive Learning [J]. Computer Science, 2025, 52(5): 139-148. |
[9] | MIAO Zhuang, CUI Haoran, ZHANG Qiyang, WANG Jiabao, LI Yang. Restoration of Atmospheric Turbulence-degraded Images Based on Contrastive Learning [J]. Computer Science, 2025, 52(5): 171-178. |
[10] | TIAN Qing, KANG Lulu, ZHOU Liangyu. Class-incremental Source-free Domain Adaptation Based on Multi-prototype Replay andAlignment [J]. Computer Science, 2025, 52(3): 206-213. |
[11] | YUAN Ye, CHEN Ming, WU Anbiao, WANG Yishu. Graph Anomaly Detection Model Based on Personalized PageRank and Contrastive Learning [J]. Computer Science, 2025, 52(2): 80-90. |
[12] | LIU Yanlun, XIAO Zheng, NIE Zhenyu, LE Yuquan, LI Kenli. Case Element Association with Evidence Extraction for Adjudication Assistance [J]. Computer Science, 2025, 52(2): 222-230. |
[13] | YE Lishuo, HE Zhixue. Multi-granularity Time Series Contrastive Learning Method Incorporating Time-Frequency Features [J]. Computer Science, 2025, 52(1): 170-182. |
[14] | TIAN Sicheng, HUANG Shaobin, WANG Rui, LI Rongsheng, DU Zhijuan. Contrastive Learning-based Prompt Generation Method for Large-scale Language Model ReverseDictionary Task [J]. Computer Science, 2024, 51(8): 256-262. |
[15] | TIAN Qing, LU Zhanghu, YANG Hong. Unsupervised Domain Adaptation Based on Entropy Filtering and Class Centroid Optimization [J]. Computer Science, 2024, 51(7): 345-353. |
|